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I Abstract

We designed and built an apparatus that generates nearly homogeneous and isotropic
turbulence with a small mean flow. The apparatus is shaped as an icosahedron,
and contains 140 liters of water. The flow is driven by 12 independently controlled
propellers, each located at one of the vertices of the icosahedron. We carried out
Lagrangian particle tracking measurements experiments with measurement volumes
up to a size of 10× 10× 10 [cm3], which is comparable with the integral length scale
of the turbulent flow. The apparatus generates nearly homogeneous and isotropic
turbulence with a Taylor microscale Reynolds number Rλ ≈ 350. The measured
mean flow was found to be less than 20% of the fluctuating velocity throughout the
observed volume. We also measured the Lagrangian n−th order structure functions
of position, Rn(τ) = 〈|x(t+ τ)− x(t)|n〉, and velocity, Kn(τ) = 〈|v(t+ τ)− v(t)|n〉,
in the flow and compared the measurements with theoretical predictions from
Zybin et al [1]. At Rλ ≈ 200, we measured the Lagrangian structure functions of
position up to the ninth order, and found that they were proportional to τ 0.9n in the
inertial range.
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II Introduction

Turbulence is a phenomenon which we encounter every day. Starting from the way
vapor rises from a hot cup of coffee, to the mixing of milk and coffee caused by
stirring, to the combustion process in a car engine, to pipe flows and a thunderstorm
in the evening, turbulence plays a major role.

Predominant in every flow are inertial forces and damping frictional, or viscous,
forces. If the viscous forces dominate, the flow is organized in lamina, hence it is
referred to as a laminar flow. An increase in the flow speed leads to an increase
in the importance of inertia. When this happens, perturbations arising from the
boundaries (e.g. propellers) or from body forces acting on the flow are not damped
out and sum up until the flow breaks up into eddies of different sizes, which are
advected by the mean flow. The flow is then called turbulent.

Although the equations that describe a flow are known since the time of Navier and
Stokes [2], it is still not possible to predict the behavior of turbulent flows. The reason
for this lies in the fact that these equations are hardly ever analytically solvable.
In 1941, Kolmogorov [3] established a universal, statistical approach to describe
turbulence. In this approach the flow is characterized by means of distribution and
autocorrelation functions. Due to his work and that of his successors it is possible to
estimate the shape of these functions for a sufficiently turbulent flow. Although the
original idea was formulated in the Eulerian framework, i.e. by observing a fixed
region in the flow, new theoretical insights (see e.g. [4, 5]) were gained from models
using the Lagrangian framework. The latter describes the flow by trajectories of fluid
elements or particles. One would like to test these theories but the difficulty lies in
that they are only applicable where the turbulence is statistically homogenous and
isotropic. The creation of experimental conditions fulfilling these two requirements
is already a hard task. In addition, further problems arise from the measurement
techniques available.

For a long time only Eulerian measurements were accessible to the experimentalist.
In 1971 [6], fluid elements were followed in a comoving coordinate system by introduc-
ing particles in the flow for the first time. These Lagrangian measurement techniques
have enabled scientists to gain better understanding of processes such as the mixing
of two different fluids or the properties of scalar fields like temperature or pressure [7].
However, to follow particles for sufficiently long times, Lagrangian measurement
techniques require the mean flow to be small compared to the fluctuations in the
particles’ velocity over a large volume.

This requirement, however, is difficult to be met by apparatuses such as wind
tunnels or mixers. Additional problems for typical mixers in testing Kolmogorov’s
theories lie in the absence of local isotropy and homogeneity over a sufficiently large
observation volume.
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II Introduction

In the current research project, the Lagrangian Exploration Module (LEM) will be
presented as an apparatus meeting both isotropy and homogeneity requirements
over a region comparable to the size of the biggest eddies. Furthermore, the LEM
has a small mean-flow, thus providing ideal conditions for Lagrangian experiments
on turbulent flows. To achieve these properties, the apparatus is shaped as an
icosahedron, and the flow is driven by twelve independently controlled propellers,
each at one of the vertices of the icosahedron. This setup enables us to also investigate
the influence of different forcings on the flow.

Furthermore, we compared four different ways of driving the flow. For two of the
four forcings, a detailed study on their influence on the mean flow was carried out.

Lagrangian Particle Tracking measurements were performed on the LEM to char-
acterize the machine. Parts of the results were compared with a so far untested
prediction on the Lagrangian structure functions from Zybin et al [1].

The present work is organized as follows:
Chapters III and IV provide the theoretical and experimental background. The
experimental setup is explained in chapter V and the analysis methods are described
in chapter VI. The results are subdivided into three main parts. Basic properties of
the apparatus, such as Reynolds number and velocities are discussed in section VII.3.
The influence of different forcings is investigated in section VII.4, and the predictions
of Zybin et al [1] on the shape of the Lagrangian structure functions of position and
velocity are compared with our experimental results in section VII.5.

A resume of the results is provided in chapter VIII.
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III Theoretical Background

III.1 Describing a flow

Describing a simple flow from a molecular point of view is, however, not practical
due to the large number of molecules present. One, therefore, turns to a continuum
approach, as employed for example by Euler, Navier and Stokes.

All physical properties of the flow are then described by a field A(X, t) or φ(X, t),
where the fields are assumed to be smooth.

The following is mostly based on references [8] and [9]. Further details can also
be found under [10], [2] and [11].

III.2 Hydrodynamics

III.2.1 Continuum equation

In classical physics mass is conserved. For fluid dynamics mass conservation can be
expressed in terms of the density ρ:

∂

∂t

∫
V

ρ dV =

∫
∂V

ρu dA (III.1)

where u is the fluid velocity through the surface ∂V of the volume V .
Using Gauss’ Law we get

∂

∂t

∫
V

ρ dV =

∫
V

∇ · (ρu) dV

⇔ ∂

∂t
ρ = ∇ · (ρu)

(III.2)

A constant density reduces equation (III.2) to

∇ · u = 0 (III.3)

Consequently there are neither sinks nor sources in flows of incompressible fluids.

III.2.2 Euler equation

In the middle of the 18th century Euler introduced the idea of internal pressure.
Using this concept one can consider a small box with an edge length ∆x and calculate
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III Theoretical Background

the forces acting upon it. In the non-viscous case only pressure and inertial force
apply. To conserve momentum both forces have to be equal.

Fpressure︷ ︸︸ ︷
−∆pi · (∆x)2 =

Finertial︷ ︸︸ ︷
ρ (∆x)3 d

dt
ui

⇔ −∆pi
∆x

= ρ
d

dt
ui

(III.4)

Going to infinitesimally small sizes one can write

ρ
d

dt
u(x, t) = −∇p (III.5)

The total derivative d
dt
φ(x, t) of an arbitrary field depending only on position and

time is

d

dt
φ(x, t) =

∂

∂t
φ(x, t) +

∂

∂x
φ(x, t)

∂x

∂t

=

[
∂

∂t
+ u(x, t) · ∇

]
φ(x, t)

(III.6)

The term in brackets is called the comoving time derivative or the substantial time
derivative. Applying equation (III.6) to equation (III.5) one gets

ρ

(
∂

∂t
+ u(x, t) · ∇

)
u(x, t) = −∇p (III.7)

The result (III.7) is a nonlinear equation. Frictional forces, that have been neglected
so far, will introduce further terms to (III.7). As friction becomes relevant when
calculating drag forces, it is necessary to expand the considerations above to viscous
fluids. Details of the derivation are presented in the following section.

III.2.3 Navier–Stokes equation

The Euler equation (III.7) can be improved by refining the pressure force term. The
surface forces acting on the small box, introduced in the section before, originate
from the molecular forces inside the box. Using the stress tensor τij – also known
from solid state physics – we get1

ρ
duj
dt

=
∂τij
∂xi

+ fj (III.8)

where f describes the body forces which act on the fluid.
The stress tensor can be decomposed into the hydrostatic pressure, p, and a stress

term, sij:
τij = −pδij + sij (III.9)

1Repeated indices are implicitly summed over (Einstein notation).
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III.2 Hydrodynamics

In general, the stress tensor, sij, is a complicated tensor depending on the fluid
properties, the flow and in some case also on the history of the flow. As a simplification,
we will focus on so-called Newtonian fluids, e.g. water. They are characterized by
the fact that the fluid is isotropic, with the stress, sij(r, t), vanishing for the fluid at
rest and depending only on the strain rate at the same point r and at the same time
t. For small strain rates, ∂uk

∂xl
, we can assume that sij(r, t) does only depend linearly

on spatial derivatives, ∂uk
∂xl

.

sij can decomposed into a symmetric, 1
2

(sij + sji), and an antisymmetric part,
1
2

(sij − sji). If we picture a fluid with a uniform rotation of angular velocity, ω, it has
the velocity, us(r) = ω × r. Applying this field to the symmetric and antisymmetric
part one can easily see that only the symmetric part of sij vanishes. However, if the
fluid is rotating as a whole, there is no relative motion between fluid elements, i.e.
the stress vanishes. Consequently, sij has to be symmetric. In other words

sij = sji (III.10)

The most general linear symmetric combination of ∂uk
∂xi

for an isotropic fluid [2] is:

sij = a

(
∂uj
∂xi

+
∂ui
∂xj

)
+ b

(
∂uk
∂xk

δij

)
(III.11)

where a and b are parameters. Equation (III.11) can be rewritten to

sij = µ

(
∂uj
∂xi

+
∂ui
∂xj
− 2

3

∂uk
∂xk

δij

)
︸ ︷︷ ︸

rate of shear tensor

+ ζ

(
∂uk
∂xk

δij

)
︸ ︷︷ ︸

rate of expansion tensor

(III.12)

The parameter µ is the so-called dynamic viscosity, and ζ is the bulk viscosity2,
the two material parameters describe how the fluid reacts to shear and changes in
its volume. As an approximation they are assumed to be independent of velocity,
position and time. The derivative of equation (III.12) is

∂

∂xj
sij = µ

(
∂

∂xi

∂uj
∂xj

+
∂

∂xj

∂ui
∂xj
− 2

3

∂

∂xj

∂uk
∂xk

δij

)
+ ζ

(
∂

∂xj

∂uk
∂xk

δij

)
= µ

∂

∂xj

∂ui
∂xj

+ µ

(
∂

∂xi

∂uj
∂xj
− 2

3

∂

∂xj

∂uk
∂xk

δij

)
+ ζ

(
∂

∂xj

∂uk
∂xk

δij

)
= µ

∂2ui
∂x2

j

+ µ

(
∂

∂xi

∂uj
∂xj
− 2

3

∂

∂xi

∂uk
∂xk

)
+ ζ

(
∂

∂xi

∂uk
∂xk

)
= µ

∂2ui
∂x2

j

+
(µ

3
+ ζ
)( ∂

∂xi

∂uk
∂xk

)
(III.13)

Inserting the obtained stress tensor in equation (III.8) we get

ρ
d uj
dt

= − ∂p

∂xi
δij + µ

∂2uj
∂x2

i

+
(µ

3
+ ζ
)( ∂

∂xj

∂uk
∂xk

)
+ fj

⇔ ρ

[
∂

∂t
+ u · ∇

]
u = −∇p+ µ∇2u +

(µ
3

+ ζ
)
∇ (∇ · u) + f

(III.14)

2also called second viscosity
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III Theoretical Background

This is the Navier–Stokes equation for a compressible Newtonian fluid. It should
be noted that µ and ζ are depending on the temperature and the pressure. Thus,
further information is needed to fully describe a flow. For incompressible fluids the
divergence of u vanishes, so that the Navier–Stokes equation turns into

ρ

[
∂

∂t
+ u · ∇

]
u = −∇p+ µ∇2u + f (III.15)

III.2.4 The nondimensional Navier-Stokes equation

Usually the Navier-Stokes equation is presented in a dimensionless form. The
advantage of such a representation is that different hydrodynamical setups can be
compared. So long as their relative dimensions correspond, they’ll be described by
the same (dimensionless) equation. Accordingly their flow behavior should be the
same.

Introducing a length scale, L, and a velocity scale, U , we can write

x̂ =
x

L
and t̂ = t

L
U

(III.16)

as well as
p̂ =

p

ρU2
and û =

u

L
(III.17)

Plugging these new parameters into equation (III.15) one obtains:

∂u

∂t
+ u · ∇u = −∇p +

1

Re
∇2u (III.18)

where Re is the so-called Reynolds number

Re =
ρU L
µ

=
U L
ν

(III.19)

with ν ≡ µ
ρ

denoting the kinematic viscosity. It is advantageous to use the kinematic
viscosity, ν, instead of the two parameters density, ρ and dynamic viscosity, µ, to
describe the fluid properties.

As already indicated, setups having the same boundary conditions and the same
Reynolds number develop the same flow characteristics. The Reynolds number can
be seen as the ratio between the magnitude of inertia forces arising from ∂tu+u ·∇u
and the viscous forces represented by ∇2u. For sufficiently high Reynolds number
the flow is dominated by inertia and frictional forces are negligible. Moreover, one
obtains the Euler equation (III.7) in the limit of Re→∞.

III.3 Introduction to turbulent flows

Due to its non-linear term the Navier-Stokes equation (III.15) is sensitive to initial
conditions and boundary conditions. An additional problem arises from the pressure
term. Although this term is linear, one has to use Green’s function to compute the

14



III.4 Energy cascade

pressure field. Consequently, this term depends on the complete flow field and its
boundary conditions.

For a small Reynolds number, Re, the viscous term of the Navier-Stokes equation
dominates. Thus small perturbations arising from the boundaries or body forces
acting on the fluid are damped out, and one can find steady-state3 solutions of the
Navier-Stokes equation. The flow is then organized in stationary streamlines. In
other words, the flow can be pictured as fluid lamina which glide along each other
but do not cross. Hence, this type of flow is called laminar.

For an increasing Reynolds number perturbations arising from the boundaries or
body forces acting on the fluid are not damped out anymore and the lamina break up
into many eddies, which are advected with the mean-flow. The system evolves into
a spatio-temporal chaotic system which is called turbulence. In this regime mixing
is enhanced, but also the drag force acting on a body moving through the flow is
higher in a turbulent flow than in the laminar case.

For an easier characterization, it is useful to decompose the velocity field, u(x, t),
into a mean flow field 〈u(x)〉 plus the turbulent fluctuations of the velocity u′(x, t):

u(x, t) = 〈u(x)〉+ u′(x, t) (III.20)

The theories referred to in this text assume a negligible mean flow.

III.4 Energy cascade

The description of turbulence relies very much on one concept first introduced by
Richardson: the energy cascade.

Starting a flow through e.g. propellers creates big whirls of a size, L, and a
Reynolds number, Re(L). For sufficiently strong forcing at this scale L, the Reynolds
number, Re(L), is large enough to neglect viscosity and resulting energy losses.
However, the injected energy has to be dissipated.

Following Richardson’s proposal each big vortex then breaks up into several smaller
vortices. The latter would be of a different length scale l and more importantly of
a smaller Reynolds number Re(l) < Re(L). Energy conservation dictates that all
energy from the first generation of vortices has to be passed to the next. The child
vortices again split into more vortices of even smaller size l′ and Re(l′) < Re(l). This
self-similar process is repeated until molecular interactions start playing a role, which
occurs at Re ≈ 1.

In 1941, Kolmogorov put Richardson’s proposal in mathematical terms by making
three hypotheses. According to these, energy conservation dictates that the rate of
energy transfered from a length scale to its child vortices is the same at all scales
in the energy cascade. Thus, one can define the energy dissipation rate, ε, as the
dissipated energy per unit time and unit mass. Since the rate of transfered energy
per unit mass equals the rate of energy dissipated, ε, it is also called energy transfer
rate.

3Of course, only if the boundary conditions are not time dependent.
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III Theoretical Background

Furthermore, he postulated that the size of the smallest eddies depends only on
the viscosity of the fluid and the energy transfer rate. It is common to use the letter,
η, to indicate the smallest (Kolmogorov) scale.

Kolmogorov also stated, that the statistical behavior of eddies much smaller
than the biggest length scales, L, but still much bigger than the smallest eddies
depends only on the energy transfer rate, ε. This range is called inertial range. A
size characteristic for this range is the Taylor micro-scale, λ. The application of
Kolmogorov’s hypotheses will be shown in section III.6.

A visualization of the Richardson cascade is provided in figure III.1.

Inertial RangeEnergy injection
Range         

Dissipative
Range

Lapp Lint λ η

τηTint

Figure III.1: Sketch of the Richardson cascade. The system (of size Lapp) injects
energy at the size L characterizing the biggest whirls. These whirls break up into
smaller whirls, which break up into even smaller eddies, and so forth. This process
is stopping in the dissipative range when viscosity becomes non-neglectible and the
injected energy is finally converted to heat.

III.5 Dimensional arguments

Dimensional arguments provide a useful tool for order of magnitude estimates. The
Navier-Stokes equation (III.15) is fully described by length, velocity, pressure, density
and viscosity.

For example, the characteristic time scale, T , for the big whirls with size L and
characteristic velocity, U , is

T ∼ L
U

(III.21)

16



III.6 K41

Further, the energy dissipation rate ε is measured in
[
kgm2

s2
· 1
kg
· 1
s

]
=
[
m2

s3

]
and is

fully characterized by the velocity and the length scale of turbulent eddies. The only
possible combination using only these parameters with the same units is:

ε ∼ U
3

L
(III.22)

III.6 K41

In 1941, Kolmogorov [3] derived important properties of turbulent flows using
Richardson’s idea of the energy cascade. His publications had such a big impact on
the turbulence community that his theory is referred to as K41.

III.6.1 Kolmogorov’s hypotheses & scales

Before Kolmogorov’s hypotheses can be introduced one has to define local homogene-
ity and isotropy.

Looking at region G in a turbulent flow, let x(1) , . . . , x(N) represent a set of points
within G. Choosing one of the x(i) as a reference x(0), one can introduce new
coordinates

y(i) = x(i) − x(0)

and velocity differences

v(y(i)) = U(x(i), t)−U(x(0), t)

Every v(y(i)) is itself a random variable following a probability density function
dependent on the flow properties at y(i). Allowing fv ≡ fv

(
y(1), . . . ,y(N)

)
to desig-

nate the joint probability density function (PDF) of finding a given set of velocities
v(y(1)), . . . ,v(y(N)) at the N points and the same time, the following definitions are
possible:

local homogeneity A turbulent flow is locally homogeneous in G, if, for a set y(n)(n =
1, . . . , N), the PDF fv is independent of the exact choice of the reference point
x(0).

local isotropy The turbulent flow is locally isotropic in G if it is locally homogeneous
and invariant to rotations and reflections.

With the help of these definitions Kolmogorov established three hypotheses

hypothesis of local isotropy In any turbulent flow with a sufficiently high Reynolds
number, the turbulence is – to a good approximation – locally isotropic for
a sufficiently small G not situated near the boundaries or singularities of the
flow.

17



III Theoretical Background

first similarity hypothesis For locally isotropic turbulent flows fv is only determined
by the kinematic viscosity, ν, and the energy dissipation rate, ε.

second similarity hypothesis If the separation between the vectors y(m) is large com-
pared to the Kolmogorov scale, η, the joint PDF fv is uniquely determined by
the energy dissipation rate, ε, and does not depend on ν.

Kolmogorov’s hypotheses make it possible to describe the turbulent flow in terms
of statistical measures.

Kolmogorov realized that, according the Richardson cascade model, the smallest
scales of motion occur at a Reynolds number equal to 1.

Using the first similarity hypothesis and equation (III.22), one can define the
smallest length scale η, the smallest velocity scale uη and the smallest time scale τη:

1 = Re =
η uη
ν

=
η4/3 ε1/3

ν
⇒ η = (ν3/ε)1/4

(III.23)

Similarly for the smallest velocity scale, uη, one arrives at:

1 = Re =
η uη
ν

=
u4
η

ε ν
⇒ uη = (εν)1/4

(III.24)

And for the smallest time scale, τη, one deduces:

τη =
η

uη
= (ν/ε)1/2 (III.25)

One generally speaks of η, uη and τη as Kolmogorov scales.
The Reynolds number of the flow is

Re =
U L

ν
(III.26)

where L represent the biggest scale of the flow and U the velocity corresponding to
this scale. Thus, we can relate the Kolmogorov scales to the biggest scales of the
flow

η/L ∝ Re−3/4 (III.27a)

uη/U ∝ Re−1/4 (III.27b)

τη/T ∝ Re−1/2 (III.27c)

where T ≡ L
U

is the time scale of the flow.
A consequence of the equations (III.27) is that the Kolmogorov scales and the

biggest scales of the flow become more separated with increasing Re. This conclusion
is sometimes referred to as Kolmogorov’s idea of scale separation.
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v2(x,t)

v1(x,t)

separation vector r

normal component

longitudinal component

Figure III.2: Sketch of DNN and DLL. Two �uid elements indicated by the blue
dots have a velocity v1 and v2, and are separated by the separation vector r. The
longitudinal second order structure function, DLL, is computed from the component of
the velocities parallel to r, whereas the transverse, or normal, second order structure
function is build using the components of the velocity vectors which are normal to r.

III.6.2 Second order structure functions � DLL and DNN

The Eulerian second order structure function is de�ned as

Dij(r,x, t) = �[Ui(x + r, t)� Ui(x, t)] [Uj(x + r, t)� Uj(x, t)]� (III.28)

where the index refers to one component of the velocity vector U and the brackets
�· �denote the average over several similarly prepared experiments.

In terms of y and v i.e. substituting r = y(2) � y(1), x = y(1) + x(0) and choosing
the origin to be x(0):

Dij(y
(2) � y(1),y(1) + x(0), t) =

��
vi(y

(2))� vi(y(1))
〉�
vj(y

(2))� vj(y(1))
〉〈

(III.29)

Assuming local isotropy � i.e. r ��r�much smaller than the biggest length
scale � then Dij is neither dependent on its second argument x in equation (III.28)
nor on x(0) in equation (III.29). It only depends on r and can be written Dij(r, t).
Seeing that it only depends on r, Dij can be split up into a term containing the
inter-dependence between the vector components ri and rj and a term independent
of these.

Such a representation would be

Dij = A(r, t)�ij +B(r, t)
ri
r

rj
r

with two (yet) arbitrary functions A(r, t) and B(r, t). It is convenient to rotate the
coordinate system such that r is r · ex. One obtains:

DLL �Dxx = A(r, t) +B(r, t) = �(�vx)2� (III.30)

Dij = B(r, t)
ri
r

rj
r

= 0 with i �= j (III.31)

DNN �Dyy = Dzz = A(r, t) = �(�vy)2�= �(�vz)2� (III.32)
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DLL is the so-called longitudinal second order structure function, whereas DNN

denotes the transverse, or normal, second order structure function. An illustration
of DNN and DLL is provided in figure III.2.

Combining the equations above we arrive at

Dij(r, t) = DNN(r, t)δij + [DLL(r, t)−DNN(r, t)]
rirj
r2

(III.33)

In order to relate DNN and DLL consider again equation (III.29). Rewriting

v
(k)
i ≡ vi(y

k)) for k = 1 or 2 and expanding equation (III.29) one calculates:

Dij(r, t) =
〈
v

(1)
i v

(1)
j

〉
+
〈
v

(2)
i v

(2)
j

〉
−
〈
v

(1)
i v

(2)
j

〉
−
〈
v

(2)
i v

(1)
j

〉
(III.34)

Because of isotropy
〈
v

(1)
i v

(1)
j

〉
=
〈
v

(2)
i v

(2)
j

〉
. By mirroring the coordinate system we

get
〈
v

(1)
i v

(2)
j

〉
=
〈
v

(2)
i v

(1)
j

〉
. Thus

Dij(r, t) = 2
〈
v

(1)
i v

(1)
j

〉
− 2

〈
v

(1)
i v

(2)
j

〉
=

2

3

〈
v2
〉
− 2

〈
v

(1)
i v

(2)
j

〉
(III.35)

The derivative of (III.35) yields:

∂Dij

∂y
(2)
j

= −2

〈
v

(1)
i

∂v
(2)
j

∂y
(2)
j

〉

The continuity equation dictates:

∂v
(2)
j

∂y
(2)
j

= 0 ⇒ ∂Dij

∂y
(2)
j

= 0
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The same holds true for the derivative
∂Dij

∂y
(1)
j

. Hence4:

0 =
∂Dij(r, t)

∂ri
=

∂

∂ri
(DNN(r, t)δij) +

∂

∂ri

(
[DLL(r, t)−DNN(r, t)]

rirj
r2

)
=
rj
r2

[
r
∂DLL(r, t)

∂r
+ 2 (DLL(r, t)−DNN(r, t))

] (III.36)

Therefore:

DNN = DLL +
r

2

∂DLL(r, t)

∂r
(III.37)

In consequence, DNN is completely determined by DLL. Assuming a statistically
stationary turbulent flow the brackets 〈·〉 denoting the average over identically or
rather similarly prepared experiments can be replaced by a temporal average.

The term (εr)2/3 has the unit of velocity squared and can be used to create a
non-dimensional second-order structure function D̂LL(r/η).

DLL(r) = (εr)2/3D̂LL(r/η)

For large r/η the second similarity hypothesis claims that DLL is independent of
ν. Since η is a function of ε and ν, to satisfy the hypothesis D̂ cannot depend on
r/η. I.e. D̂LL = const = C2. Experiments have shown that C2 is approximately 2.1.
Plugging that into equation (III.37) we get

DNN = DLL +
1

3
DLL =

4

3
DLL =

4

3
C2(εr)2/3 (III.38)

Equation (III.38) allows to measure the energy dissipation rate by investigating the
compensated second order structure function

ε(r) ≈
(
DLL

C2

)3/2
1

r
=

(
3DNN

4C2

)3/2
1

r
(III.39)

For sufficiently turbulent flows equation (III.39) shows a plateau in the inertial range.

4 Auxiliary calculations using Einstein summation convention:

∂

∂ri
(DNN (r, t)δij) =

∂DNN (r, t)

∂ri
δij +DNN (r, t)

∂δij
∂ri

=
∂DNN (r, t)

∂r

∂r

∂rj
=
rj
r

∂DNN (r, t)

∂r

∂

∂ri

(
rirjr

−2) =
∂ri
∂ri

rjr
−2 +

∂rj
∂ri

rir
−2 +

∂r−2

∂ri
rirj

= 3rjr
−2 + riδijr

−2 +
∂r−2

∂ri
rirj

= 3rjr
−2 + rjr

−2 − 2rjr
−2

= 2
rj
r2

rirj
r2

∂

∂ri
DLL(r, t)− rirj

r2
∂

∂ri
DNN (r, t) =

rj
r2

(
r
∂DLL(r, t)

∂r
− r ∂DNN (r, t)

∂r

)
For r parallel to ex we have rirj = 0 for i 6= j. Hence, the two derivative terms of DNN are the
same and cancel each other.
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III.6.3 Eulerian structure functions of order three and higher –
DLLL and Dp

The Eulerian structure function of order p is defined as

Dp =
〈
|vL(x + r, t)− vL(x, t)|p

〉
(III.40)

The second similarity hypothesis and dimensional analysis yields that D scales as

Dp = Cp (ε r)p/3 (III.41)

where Cp is a constant. It should be noted that the predicted scaling exponent of
p/3 for p 6= 3 has not been observed experimentally.

For the third order, an exact solution can be derived from the Navier-Stokes equation:

DLLL(r, t) = −4

5
ε r (III.42)

Equation III.42 is called Kolmogorov 4
5

law.
A detailed discussion of the Kolmogorov 4

5
law as well as of higher order structure

functions can be found in Frisch’s book [10].

III.6.4 Eulerian Autocorrelation

Let
Rij(r, t) ≡ 〈ui(x + r, t)uj(x, t)〉 (III.43)

denote the Eulerian autocorrelation. In the case of homogeneous isotropic turbulence
with zero mean velocity Rij is independent of x. Using the same arguments and the
same notation already used to obtain (III.33) we get

Rij(r, t) = RNN(r, t)δij + [RLL(r, t)−RNN(r, t)]
rirj
r2

= 〈u2
L〉
(
g(r, t)δij + [f(r, t)− g(r, t)]

rirj
r2

)
with 〈u2

L〉 ≡
〈
(u · er)2〉

(III.44)

where f ≡ RLL/〈u2
L〉 is the longitudinal and g ≡ RNN/〈u2

L〉 is the transverse
autocorrelation functions. In conformity with the continuity equation the following
relation has to be valid:

∂Rij

∂rj
=

∂

∂rj
〈ui(x + r, t)uj(x, t)〉 = 〈ui(x + r, t)

∂

∂rj
uj(x, t)〉 = 0 (III.45)

Analogous to equation (III.37) one deduces:

g(r, t) = f +
r

2

∂f(r, t)

∂r
(III.46)

Two distinct length scales can be defined from the autocorrelation f : the integral
length scale, L, and the Taylor micro scale, λ. Since transverse and longitudinal
functions are connected by equation (III.46) theses scales can also be computed from
g.
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III.6.5 Integral Length Scale

The longitudinal integral length scale is defined as

LLL ≡
∞∫

0

f(r, t)dr (III.47)

whereas the transverse integral length scale is given by

LNN ≡
∞∫

0

g(r, t)dr

=

∞∫
0

f(r, t)dr +

∞∫
0

1

2
r
∂

∂r
f(r, t)dr

= LLL +

[
1

2
rf(r, t)

]∞
0

−
∞∫

0

1

2
f(r, t)dr

(III.48)

If f(r, t) decays more rapidly than r−2, the term
[

1
2
rf(r, t)

]∞
0

vanishes and hence

LNN =
1

2
LLL (III.49)

The longitudinal integral length scale LLL can be considered to be the scale of the
biggest eddies. Since longitudinal and transverse integral length scale are related, it
is common to use the integral length scale L = LLL.

III.6.6 Taylor microscale & Taylor scale Reynolds number – Rλ

The second length scale which can be obtained from the autocorrelation f is the
Taylor microscale λf (t). Because of isotropy f(r) is an even function assuming values
below or equal to unity. Thus, the first derivate f ′(0, t) at the origin has to be zero.
Furthermore, autocorrelation functions decrease at the origin. Consequently, the
origin will be a maximum and the second derivative f ′′(0, t) at that point will be
non-positive. The Taylor microscale can then be defined as

λf (t) ≡
[
−1

2
f ′′(0, t)

]−1/2

(III.50)
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Using equation (III.46) it is

−〈u2〉f ′′(0, t) = −〈u2〉 lim
r→0

∂2

∂r2
f(r, t)

= − lim
r→0

〈(
∂2uL
∂r2

)
x+err

uL(x, t)

〉
= −

〈(
∂2uL
∂x2

L

)
uL

〉
= −

〈
∂

∂xL

(
uL
∂uL
∂xL

)〉
+

〈(
∂uL
∂xL

)2
〉

= − ∂

∂xL

〈(
uL
∂uL
∂xL

)〉
+

〈(
∂uL
∂xL

)2
〉

=

〈(
∂uL
∂xL

)2
〉

(III.51)

Combining (III.51) and (III.50) it is〈(
∂uL
∂xL

)2
〉

=
2 〈u2〉
λ2
f (t)

(III.52)

λg(t) ≡
[
−1

2
g′′(0, t)

]−1/2
is the transverse Taylor microscale, using equation (III.46)

one can calculate the relation between longitudinal and transverse microscale.

λg(t) =

[
−1

2
g′′(0, t)

]−1/2

=

[
−1

2

(
f ′′ + lim

r→0

r

2

∂3f(r, t)

∂r3

)]−1/2

=

[
−1

2

(
f ′′ +

1

2
lim
r→0

[
∂

∂r
[rf ′′]− f ′′

])]−1/2

=

[
−1

2

(
f ′′ − 1

2
f ′′
)]−1/2

=
λf (t)√

2

(III.53)

For historic reasons, one usually talks about the Taylor microscale λ = λg.

It can be shown [9] that

ε = 15 ν

〈(
∂uL
∂xL

)2
〉

(III.54)

Using equation (III.53) and (III.52) it follows

ε = 15 ν
u′2

λ2
g

(III.55)
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This can be used to define the Taylor scale Reynolds number

Rλ ≡
u′λg
ν

(III.56)

The relation between Re and Rλ can be easily shown

R2
λ =

u′2λ2
g

ν2

= 15 ν
u′2

ε
· u
′2

ν2

= 15
l

u′3
u′4

ν
= 15Re

(III.57)

Thus, Rλ is the Reynolds number at the intermediate length scale λg lying between
then η and L. There is no direct physical meaning of this length scale but that λ is
well situated in the inertial range. In turbulence research it is common to use Rλ

instead of Re as a measure for the strength of the turbulence. The magnitude of λg
can be estimated by applying the definition of the Kolmogorov scales to equation
(III.55). It is

λg =
√

15 τη u
′ ∼
√

15 η R
1/2
λ (III.58)

For example for intense turbulence of Rλ ≈ 660 the Taylor micro scale is 100 times
the Kolmogorov length scale but still only 1/44 of the integral length scale.

III.7 Limitations

The results obtained in the section III.6 are based on Kolmogorov’s hypotheses and
the Richardson cascade. Only Kolmogorov’s four-fifth law (equation III.42) can be
derived directly from the Navier-Stokes equation. Therefore, some limitations arise.

Landau pointed out (see [9], page 176), that the averaging process makes it impossible
to find universal laws for the structure functions. The ensemble average over n
realizations of the turbulent flow of a structure function Dp is

Davg
p =

1

N

N∑
i=1

Di (III.59)

and the average of their corresponding energy transfer rate εi

εavg =
1

N

N∑
i=1

εi (III.60)

Combining equations (III.41), (III.60) and (III.59) yields(
1

N

N∑
i=1

ε

)p/3

=
1

N

N∑
i=1

(εi)
p/3 (III.61)
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Equation (III.61) can only be true for the third order structure function. Therefore,
the structure functions depend on the way the turbulence is created.

A further problem emerges from the Richardson cascade picture. There the energy is
strictly transfered from bigger whirls to their smaller child whirls. In nature smaller
whirls can act also on bigger whirls. Furthermore, the child eddies do not necessarily
occupy the same amount of volume than their parent eddy. This leads to a violation
of the self similarity of the model.

Kolmogorov’s requirements on the choice of G and the Reynolds number are experi-
mentally vague. There is experimental evidence that the turbulence approaches local
isotropy with increasing Re. Yet, at intense turbulence of Rλ ≈ 970 the flow is still
locally anisotropic [12, 7, 13, 14].

The limitations named above are usually referred to as internal intermittency. Newer
models tried to improve K41 predictions, but we still lack of a good understanding
of turbulence.

A locally isotropic flow regime is major hypothesis of most models. In [15] Bachelor
investigated axisymmetric turbulence, which is still a strong constraint on the flow.
For instance, for axisymmetric turbulence the Eulerian autocorrelation Rij can be
decomposed into four5 dimensionless functions A, B, C and D depending on r and
the ratio between the angular and radial velocity. Analogous to equation (III.46)
the continuity equation dictates that A, B, C and D are related. However, this
relation is also much more complicated than equation (III.46). Furthermore, it is
possible to define four Taylor scales and four integral length scales. This complicates
measurements and models further. Therefore, an isotropic flow is preferred in most
models.

To investigate turbulence, wind tunnels and mixers were able to provide local isotropy
and homogeneity to a good extent. However, in a wind tunnel the fluctuating
velocity is typically 5% to 20% of the mean velocity. Many Lagrangian measurement
techniques observe a small, fixed area. For example, particles in a wind tunnel
sweeping through a (50 cm)3 observation volume at 5 m

s
, pass the volume in average

in 1
10
s. If the fluctuating velocity is small compared to the mean velocity, then the

measured Lagrangian trajectories are only few τη (or even less) short. Therefore, the
creation of mean velocities much smaller than the turbulent fluctuations is desired
for Lagrangian measurements. It should be noted that it is also possible to extend
the observation time of the particles by moving the observation volume with the flow.
For example, Ayyalasomayajula et al [16] mounted the measurement equipment on
a sledge which was moving with the mean velocity in the wind tunnel observed.

On the other hand, mixers like the very common counterrotating von Kármán mix-
ing flow 6 i.e. a cylindrical tank with two counterrotating propellers at the top and
the bottom, create an axisymmetric flow field with little mean flow within a very

5Remember that in isotropic turbulence Rij is fully described by f and 〈uL〉.
6This arrangement is also called French–Washing–Machine.
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small region in the center of the apparatus. Unfortunately, the turbulent flow inside
this region is not isotropic even at high Reynolds numbers [12]. The Lagrangian
Exploration Module can be seen as six pairs of counterrotating von Kármán mixing
flows interacting in one apparatus. As we show in chapter VII this arrangement
provides a flow which is locally isotropic in a region of the size of the integral length
scale and nearly negligible mean flow. More details on the setup of the machine can
be found in chapter V.
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IV Overview of measurement
techniques

In the last hundred years of research in hydrodynamics and aerodynamics a broad
collection of measurement techniques had been developed. A broad overview on
techniques used in experimental fluid mechanics can be found in [17]. Nevertheless,
this chapter introduces some common techniques. Particle tracking velocimetry will
be explained in detail since it was used to obtain the data.

IV.1 Hot wire Anemometry

In hot wire anemometry [18] a current is passed through a thin wire and thus the wire
is heated to a temperature T . The resistance of the wire is related to its temperature.
Gas passing by the hot wire convects heat away and thus changes temperature, which
consequently changes the resistance. Either the temperature or the current is kept
constant and by measuring the other parameter as a function of time one can obtain
the velocity at the wire. With hot wire anemometry it is not possible to determine
the flow direction. Due to technical limitations this method can only be used in gas
flows with a high mean flow.

IV.2 Laser Doppler Velocimetry

Laser–Doppler–Velocimetry (LDV) allows the non-intrusive measurement of velocity
and acceleration at a small measurement volume. As pictured in figure IV.1, a
laser beam is split in two. The frequency of one of the two beams is shifted by ∆f
(typically several MHz) using Bragg–reflexion in a so called Bragg–cell. Thereafter
the beams are aligned such that they cross at the region of interest. The cigar
shaped region is typically a few millimeters long and a few tenth of a millimeter
wide. Because of interference a pattern of parallel planes with high light intensity is
created. The distance ∆x between the interference fringes is:

∆x =
λ

2 sin (φ/2)
(IV.1)

where λ denotes the wave length of the laser and φ the angle between the two beams.
Because of the slight frequency shift the stripes are moving with velocity vf = ∆f ∆x.
Particles passing the measurement volume blink. The frequency of the blinking
light is the beat frequency of the fringes, which is Doppler shifted by the velocity
component perpendicular to the fringes. A receiver, consisting of a photo multiplier
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IV Overview of measurement techniques

Figure IV.1: Sketch of a LDV system. Image courtesy of Holger Nobach. A laser
beam is split in two part, whereas one is frequency shifted in a Bragg cell; both
beams cross at the measurement volume and interfere; because of the frequency shift
the interference stripe pattern is moving with a velocity v; particles crossing the
intersection, will blink with a frequency depending on their own velocity, the angle
between the beams and the beat frequency; acceleration and velocity can be obtained
from frequency of the beating signal

and fast signal processor, measures the light intensity as a function of time. The
velocity is calculated from the frequency of the signal. As described in [19] it is
possible to obtain particle accelerations from laser-Doppler measurements using also
the change in frequency of the time the particle passes through the measurement
volume. Unfortunately, only one particle at a time can be measured. Using two or
three LDV systems, more components of the velocity can be obtained.

IV.3 Particle Image Velocimetry

Particle Image Velocimetry (PIV) (see e.g. the review by Adrian [20]) uses one camera
to acquire a two dimensional velocity �eld. A thin laser sheet is directed to illuminate
a region in a �ow seeded with small particles. One (or more) camera(s) is orientated
at the illuminated region taking two consequent images. The time di�erence between
the images, �t, is typically very small. Thus, either high speed �lm cameras or
special PIV cameras are used. The �rst image is subdivided into small blocks and the
cross correlation between each block and the image �t later is calculated. The point
with the maximum cross correlation is considered as the new position of the block.
Thus, one can calculate the velocity of all blocks. Using more cameras it is possible
to increase the accuracy and robustness of the measurement. Furthermore, two
cameras observing from di�erent angles enable to obtain three-dimensional velocity
data on the plane de�ned by the thin laser sheet.
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IV.4 Tomographic Particle Image Velocimetry

Tomographic particle image velocimetry (tomo–PIV) is a recent development with
which one can obtain three dimensional velocity fields. Three or four cameras are
directed on an illuminated measurement volume and take synchronously images. By
using tomographic methods two 3D density fields of the two image sets are created.
Analogous to PIV, the cross correlation between a region from the first density
field and the second field is calculated. The maximum in the cross correlation is
considered to be the new position of the selected region. The velocity field can be
obtained from the three–dimensional displacement of each block from t to t+ ∆t.

IV.5 Particle Tracking Velocimetry

Most measurement techniques (e.g. Hot wire Anemometry, PIV and LDV ) allow
observation from the Eulerian point of view, meaning that the velocity is measured
at one – or several – fixed points in space. Measurement techniques working in
the Lagrangian framework make it possible to follow fluid segments along their
trajectories in the flow using particles as a probe.

In principle, Eulerian and Lagrangian measurements can be transformed into their
counterpart. In the case of two-dimensional turbulent flows the transformation can
be realized from PIV measurements [21, 22]. Yet, transforming three-dimensional
Eulerian to Lagrangian fields (and vice versa) is still impossible due to the extremely
high requirements on resolving the spatio-temporal structure of the flow. Therefore,
the Lagrangian framework is more convenient to study Lagrangian correlations and
structure functions, as well as particle dispersion and mixing.

The basic idea of Particle Tracking Velocimetry1 (PTV) is to determine the three
dimensional position of tracer particles in the flow at certain times and to build up
the points into trajectories of particles. Afterwards the velocity and acceleration can
be computed from the trajectories. To detect the tracer particles two ways have been
created so far: using the Doppler shift of a scattered wave2, and optical detection
using digital cameras.

We are using an optical method with a calibration method proposed by Tsai [26].

IV.5.1 Experimental Setup

A laser beam or a bright light source illuminates particles in a measurement volume.
The scattered light from a particle is detected by two or more high speed cameras
looking from different angles into the volume. In other words particles produce an
image on the image sensors of each camera. After taking synchronized movies, these
are downloaded to a computer for the evaluation process.

1also called Lagrangian Particle Tracking (LPT)
2The scattered wave can either be created through ultrasound [23] or a modified LDV system [24].

It should be noted that it is also possible to use small sensors which are advected with the
turbulent flows sending continuously their current status via an antenna [25].
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IV Overview of measurement techniques

The PTV method used in the experiment consists of the following three steps,
which are: particle �nding (IV.5.4), stereo matching (IV.5.5) and connection of the
points to trajectories (IV.5.6). However, before a PTV system can be used is has to
be calibrated according to the following camera model and calibration procedure.

IV.5.2 The Camera Model

zw

yw

xw

z

P(x,y,z)

image plane

lab coordinate
system

y

x
camera coordinate
system

Y

X
PuPd

P(0,0,z)

mask

Oi

Figure IV.2: Sketch of the camera model proposed by Tsai [26]. The two green planes
are parallel. For calibration a mask (blue) with a known dot pattern is moved along
the zw�axis. It is assumed that the image is only distorted along the orange lines.
This is the radial alignment constraint used in the calibration.

As proposed by Tsai [26], modern o�-the-shelf cameras and lenses are well described
by a pin hole camera with radial distortion but negligible tangential distortion.

The mathematical projection of a point in 3D onto an image sensor of a model
camera can be done in four steps. A sketch of the di�erent coordinate systems is
provided in �gure IV.2.

Step 1: A point

�� xw
yw
zw

�� in the object world coordinate system can be transformed

to the camera coordinate system by rigid body transformation�� x
y
z

�� = R

�� xw
yw
zw

�� + T (IV.2)

R =

�� r1 r2 r3

r4 r5 r6

r7 r8 r9

�� is a 3 × 3 rotation matrix and T =

�� Tx
Ty
Tz

�� a translation

vector. Since R can be expressed in terms of three Eulerian angles and the
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IV.5 Particle Tracking Velocimetry

translation also has three degrees of freedom, this step involves six unknown
parameters.

Step 2: Transformation of the 3D camera coordinates to ideal (undistorted) image
coordinates (Xu, Yu).

Xu = f
x

z
Yu = f

y

z
(IV.3)

where f is the distance between the projection center to the image sensor.
Although f should be known from the camera’s specifications and the focal
length of the objetive, it is used a free fitting parameter during calibration. In
fitting f possible distortions caused by the windows of the apparatus can be
included and better accuracy can be achieved.

Step 3: Only radial distortion is considered to be relevant for modern lenses. The
correction can be expressed as

Xd +Dx = Xu Yd +Dy = Yu (IV.4)

with

Dx = Xd

(
κ1r

2 + κ2r
4 + . . .

)
(IV.5a)

Dy = Yd
(
κ1r

2 + κ2r
4 + . . .

)
(IV.5b)

r =
√
X2
d + Y 2

d (IV.5c)

Carrying out the correction only up to the first order provides good results
at low computational costs and is numerically stable. The radial distortion
factor κ1 is introduced as another unknown parameter to be determined during
calibration.

Step 4: The real image coordinate has to be transformed to the pixel representation
in the computer:

X = Xf − Cx =
sxXd

dx
(IV.6a)

Y = Yf − Cy =
Yd
dy

(IV.6b)

with (Xf , Yf ) the position in pixels, (Cx, Cy) the position of the image center
(in pixels), dx and dy the size of a pixel in x and y direction respectively and
the so-called uncertainty image scale factor sx. The latter allows to correct
hardware issues of the cameras. In the case of an ideal sensor sx is unity.
However, it is kept as the ninth unknown parameter to be identified by the
calibration.

The center of the image plane (Cx, Cy) as well as the size of a pixel (dx, dy) is
assumed to be known.

All these steps need detailed information about the lab coordinate system, cameras,
etc. The nine parameters can be determined using a calibration method described in
the following subsection.

33



IV Overview of measurement techniques

IV.5.3 Calibration

The four steps described in subsection IV.5.2 involve nine unknown parameters
depending on the arrangement of the cameras, the cameras itself and the objectives.
The calibration method proposed by Tsai [26] allows to determine these parameters
in a robust and accurate way.

First, one has to take images of a known structure, such as a regular dot pattern
with a marked center, at several known positions in the lab system. To do so one
usually moves a plate3 with a regular dot pattern along an axis in the lab system. To
be compliant with figure IV.2, we will assume that the mask is moved in zw–direction.

In a second step, the images are being processed such that one gets a set of 3D
points (xw, yw, zw)i in the lab system and their corresponding projection on the image
plane (Xi, Yi). If only radial distortion of the image is considered, we can always
choose the rotation matrix R and T such that OiPd is parallel to P(0, 0, z)P(x, y, z)
(as displayed by the orange lines in figure IV.2). This can be rewritten as:

(Xd, Yd)× (x, y) = 0

⇔ Xd · y = Yd · x
(IV.7)

Inserting equation (IV.2) into equation (IV.7) yields:

Xd (r4 xw + r5 yw + r6 zw + Ty) = Yd (r1 xw + r2 yw + r3 zw + Tx) (IV.8)

This constraint is called radial alignment constraint. Rearranging equation (IV.8),
one can see that it yields a set of linear equations with seven unknowns.[

Yd xw Yd yw Yd zw Yd −Xd xw −Xd yw −Xd zw
]
·A = Xd (IV.9)

where A =
[
T−1
y sx r1 T−1

y sx r2 T−1
y sx r3 T−1

y sx Tx T−1
y r4 T−1

y r5 T−1
y r6

]T
contains the unknown parameters.

If the number of 3D points found is much higher than seven, equation (IV.9)
is overdetermined. In this case one can find A with a least square fit. For any
three dimensional rotation matrix R it is

∑3
i=1 R

2
ij =

∑3
j=1R

2
ij = 1. Thus one can

determine |Ty|, r7, r8, r9 and sx analytically.
The last three steps in the camera model can be combined to obtain the equations

f
x

z
= Xu = X

dx
sx

(
1 + κ1r

2
)

(IV.10a)

f
y

z
= Yu = Y dy

(
1 + κ1r

2
)

(IV.10b)

Expressing x, y and z in terms of xw, yw and zw yields:

f
r1 xw + r2 yw + r3 zw + Tx
r7 xw + r8 yw + r9 zw + Tz

= X
dx
sx

(
1 + κ1r

2
)

(IV.11a)

f
r3 xw + r5 yw + r6 zw + Ty
r7 xw + r8 yw + r9 zw + Tz

= Y dy
(
1 + κ1r

2
)

(IV.11b)

3Also called mask
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IV.5 Particle Tracking Velocimetry

Setting κ1 to zero in a first run, one gains an overdetermined set of linear equations,
which enables us to acquire good initial guesses for f and Tz. The precise values
of κ1, f and Tz can be found by employing a standard fitting scheme to equation
(IV.11b) and the found 3D points. This calibration method allows an accurate and
robust determination of the nine independent parameters in the camera model. It is
as least as accurate as and more robust than optimization schemes working on all of
the nine parameters at the same time.

IV.5.4 Particle Finding

The scattered light from the particle leaves a bright spot on the digital image. Such
a spot has a size of several pixels and – in the case of spherical particles – can
be approximated by a two-dimensional Gaussian with added noise. The spots are
identified using a segmentation technique which considers every pixel with a intensity
above a certain threshold as part of a spot.

Ouellette et al [27] discussed several methods to identify the center of a spot and
tested these methods on their performance and accuracy. The discussed attempts are

Two-dimensional Gaussian: Homogenous spherical particles should – to a first ap-
proach – result in an intensity profile which can be described as a two-
dimensional Gaussian. However, the fitting process is computationally ex-
pensive.

Two one-dimensional Gaussians: Fitting a one dimensional Gaussian in x direction
and one Gaussian in y direction produces mostly the same accuracy as the
two-dimensional Gaussian but the computational cost of the fitting are minimal
since they can be calculated from an analytical solution.

Center-Of-Mass: Non-elliptical particles and particles4 which are not uniform, will
most likely produce a non-elliptical shape with several intensity peaks. In this
case, the Center-Of-Mass can compute the approximate center of the spot with
greater accuracy than a Gaussian approach.

Neural Networks: After training, also neural networks achieved a good accuracy
even for noisy images.

All the experiments described with in this diploma thesis have been performed
using spherical particles. Therefore, the two one-dimensional Gaussian method was
sufficient.

IV.5.5 Stereo-matching

The stereo-matching code is explainded in figure IV.3. This algorithm is only able to
find particles which create a light spot on all cameras. Thus, the selection of the
threshold is the particle finding step is crucial to the stereo-matching process.

4For example: biological particles, such as algae and copepods
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Figure IV.3: Sketch of the stereo-matching algorithm. The particles create light
spots on the image planes of the three cameras, which are identi�ed with a particle
�nding method. For each pair of image planes, one �nd a spots on the �rst image
plane and projects its line of sight on the other image plane. Spots which are close
to this line are candidates for representing a real particle. They will be added to a
list containing the all spots one image plane and their corresponding candidates on
the other image plane. If it is possible to �nd a path through the lists with ends
at the start spot, one has identi�ed the spots corresponding to a particle. In this
picture, the path is 1.A ≈ 2.B ≈ 3.E ≈ 1.A. The position of the particle, �x, is the
point which has minimal distance to the lines of sight, l1, l2 and l3.

IV.5.6 Building the trajectories

The points in 3D space at di�erent timesteps are yet not associated with each
other. The connection of the points, obtained from the stereo-matching step, into a
trajectory, �x(t), in time is called tracking. In [27] , Ouellette et al investigated the
following techniques on their accuracy. A visualization of the algorithms explained
below is provided in �gure IV.4.

Nearest Neighbor: Starting with a particle �x(t) every point �x(t + �t) on the next
frame within a maximum distance ��x(t)� �x(t+ �t)�< dmax can be considered
a possible part of the trajectory. In order to detect high velocities, dmax has
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IV.5 Particle Tracking Velocimetry

to be large enough, and because of having several particles in the measure-
ment volume multiple continuations of a track are usually possible. Hence,
it is recommended to look several frames ahead to avoid building physically
meaningless trajectories.

Minimal Acceleration – 3 Frames: Using the particle position at t − ∆t and the
one at the current frame, the velocity can be calculated and the position at
x̃p(t+ 1 ∆t) can be predicted. For all particles in the search volume around the
estimate the acceleration can be calculated. The trajectory showing minimal
acceleration is considered to be more likely to be physically correct.

Minimal Change in Acceleration – 4 Frames: The position, velocity, ṽp, and accel-
eration, ãp, of the particle in frame n + 1 is estimated using the described
”Minimal Acceleration“ method (as described above) . The position in frame
n + 2 can be estimated as x̃p(t + 2∆t) = x̃(t) + ṽp · (2∆t) + ãp · (2∆t). For
all points in a search region around x̃p(t+ 2∆t) the third time derivative, (i.e.
change in acceleration), is calculated. The best match for the frame n+ 1 is
the particle showing the minimum change in acceleration from the prediction
in frame n+ 2.

Best Estimate – 4 Frames: Instead of the third time derivate for frame n+ 2, the
distance to the estimate x̃p(t+ 2∆t) is calculated for all points in the search
volume. The best match for the frame n + 1 is now the particle showing
minimum distance between estimate x̃p(t+ 2∆t) and points x̃i(t+ 2∆t).

At the beginning of a trajectory the Nearest Neighbor has to be used. Ouellette et al
[27] showed that the Best Estimate produces the best results even for higher particle
densities. Therefore, this method had been implemented in the particle tracking
method.
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ba

dc

Figure IV.4: Sketch of the discussed techniques to build the trajectories. Image
taken from [27]. Red dots indicate the particle position at t, and the arrows point
at the green particle chosen for t+ ∆t. The sub figures are: a: Nearest Neighbor
As indicated by the arrow, the particle at t + ∆t which closest to the particle at
t was picked. Clearly, this method has a high risk of building physically incorrect
trajectories. b: Minimal Accleration Using the already known particle positions at
t and t − ∆t one can estimate the position in frame t + ∆t. The particle closest
to point will be picked. c: Minimal Change in Accleration By looking one frame
back and one frame ahead one can estimate velocity and acceleration for all possible
continuations of the track. The particle at t + ∆t for which the particle in frame
t + 2∆t shows the least change in acceleration, will be chosen. d: Best Estimate
Instead of minimizing the change of acceleration, the particle at t + ∆t is picked
which shows the best estimate for a particle in t+ 2∆t. The PTV system employed
in this diploma thesis uses the Best Estimate technique.
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IV.5 Particle Tracking Velocimetry

IV.5.7 Connection of Tracks

Fluctuations in the intensity of the illumination, and hardware (e.g. dead pixels)
and software problems can cause an earlier termination of trajectories.

To avoid this H. Xu [28] developed a technique to reconnect trajectories broken into
several shorter pieces using linear interpolation in a six dimensional position� velocity
space. The algorithm is explained in �gure IV.5. The reconnected trajectories are
much longer in duration, thus providing much better Lagrangian statistics. However,
the interpolated points themselves can not be used since they would introduce an
arti�cial bias to the statistics.

ds

σp

(x|v)1(t0...t1)

(x|v)2(t2...t3)

Broken trajectory

Continuation

Discarded
trajectory

Extrapolation

Interpolation

xex

Figure IV.5: The broken trajectory (x,v)1(t) is extrapolated from its end, t1, up
to temporal search distance, tmax, along its last known velocity vector. Trajectory
starts at time t2, found within a spatial search distance d(t) = φp + t/tmax ds to
the extrapolation, are possible candidates for a continuation of the track. φp is
the uncertainty in postion measurement and ds is user set maximum. The search
area can be imagined as a truncated cone. Nevertheless, the cone is situated in
four-dimensional time-position space. For each candidate an extrapolation xex(t2) =

x1(t1) + (t2 � t1) v1(t1)+v2(t2)
2

and its distance to the candidate are calculated. The
trajectory showing the least distance is picked as the continuation. The unknown
points between x1(t1) and x2(t2) are created through a linear interpolation. For the
linear interpolation the direct connection between x1(t1) and x2(t2) is established.
To avoid a bias of the data, these arti�cial points are marked as interpolated.
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V.1 The Lagrangian Exploration Module

Figure V.1: CAD drawing of the LEM
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V.1.1 Basic structure

The Lagrangian Exploration Module (LEM) has a skeletal structure made of stainless
steel in the shape of an icosahedron. The edge� s length is 40cm � leading to a total
volume of 140 liters. On each face either a plexiglas window or a cooling plate can
be mounted. To avoid corrosion, all parts that are in contact with water, are made
either of plastic or stainless steel. The top and the bottom plate are two cooling
plates which have an additional hose attached to them, so that the tank can be �lled
with, or emptied of, the working �uid. On each of the 12 vertexes a propeller unit is
mounted.

15 M6 screws per face are used to mount windows and cooling plates. Each screw
is screwed in from the inside of the tank with a Nylon washer between the screw head
and the LEM skeleton. From the outside, standard stainless steel nuts and washers
are used to �x the plate. Additionally, an o-ring is placed along the edge between the
triangular window or cooling plate and the LEM structure to avoid leakage. Screw
glue is added to help seal o� the screw threads. Applying high vacuum grease to the
o-ring also proved to be an e�ective way to prevent leakages.

V.1.2 Propeller unit

2 16

9

5 4 3

78

Figure V.2: CAD drawing of the propeller unit; 1 : propeller, 2 : exchangeable
propeller shaft, 3 : rotating seal, 4 : bearing, 5 : shaft coupling, 6 : gearbox, 7 :
threaded hole connecting the propeller unit to the bubble trap, 8 : hole allowing
water vapor produced by the seal to leave the housing, 9 : brushless DC motor

A propeller unit (PU) is mounted to each vortex. Figure V.2 shows a CAD
drawing of the propeller unit. Both propeller and propeller shaft can be replaced,
allowing di�erent propellers to be tested at di�erent distances into the tank. The
inner part of the shaft is held by a standard double-row ball bearing. Sealing is
achieved with a rotating seal (Pac Seal). The propeller is driven by a brushless
DC-motor (IFE71, Berger-Lahr) whose speed is reduced by a 5 : 1 planetary gear
box. The gearbox and inner shaft are connected by a stainless steel �exible coupling.
A threaded hole in front of the rotating seal makes it possible to connect a hose to
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V.1 The Lagrangian Exploration Module

the propeller unit, which can be used for particle insertion or bubble removal. A
second hole drilled on the other side of the seal allows water vapor produced by the
rotating seal to leave the housing.

Motors

Each of the 12 motors is supplied with a constant voltage of 36 V and connected to
a CANbus. A maximum power of 120 W can be conferred to the flow. The power is
provided by two adjustable 1.5 kW power supplies (N5766A, Agilent). It is possible
to read out the actual voltage and current of both power supplies via ethernet.

Via CANopen commands sent over the CANbus, speed and acceleration can be
set (and changed during runtime) for each individual motor. The maximum speed is
±5000 rpm (resp. 162

3
Hz after the 5 : 1 gear box) and the minimum speed, apart

from 0 rpm, is ±300 rpm (1 Hz after gear box). The acceleration can be set between
1000 rpm/s and 10000 rpm/s. If prompted, a motor will return its actual status,
displaying for example its temperature, speed and current.

A PC with a CAN-USB adapter (PCAN-USB, isolated – Peak Systems GmbH) is
used to control the motors. The software is written in Delphi providing an automatic
and a manual mode. In the automatic mode a text file, specifying the speed and
rotation sense for each individual motor at different times, is interpreted by the
program.

Propellers

In a first attempt, we used round anodized aluminum disks of 10 cm diameter cut in
at every 60 degrees, where the corners were bent in (see figure V.3). As the first trial
produced a highly rotating flow with little pushing (measured by hand), we bent the
vanes some more until they stood out at an angle of about 30 degrees. The result
was satisfactory. It should be noted that the propellers were bent by hand, so that
each of them produces a slightly different flow.

Figure V.3: figure on the left: propeller made out of anodized aluminum, the diameter
is 10 cm;
figure in the middle: a propeller after 1 week in saline water (15 g marine salt per
liter) – the dent has a depth of ≈ 2 mm
figure on the right: stainless steel propeller of the same size and shape
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Although anodized, the propellers were still subject to corrosion in salt water
(see figure V.3). Consequently, they were replaced by stainless steel propellers of
the same size and approximately the same shape. In order to test the influence of
different propeller sizes on the flow we further designed a four-vane plastic propeller
with exchangeable vanes.

Figure V.4: plastic propeller: up to 4 vanes of different sizes can be mounted

V.1.3 Particle insertion & bubble removal

The removal of bubbles and insertion of particles is done by the same device – the
bubble trap which is shown in figure V.5. For that purpose all downward pointing
propeller units (PU) are connected to the upper inlet of a container – a modified
filter housing (Thermo Fisher Scientific). The lower outlet in return is linked to
the upward pointing PUs through a pump. The content of the container is pumped
through the six upward pointing PUs into the LEM. Hence, the fluid and bubbles
which are trapped in these PUs are transported back into the container. There, air
bubbles can escape due to their buoyancy. On the other hand, new particles inserted
into the container, will be pumped into the LEM.

It is possible to connect the container to a vacuum pump to lower the pressure
in the tank. In this case, it is necessary to bypass the pump using the three valves
shown in figure V.5. Assuming a horizontal throw of water out of the inlet of the
container a flow rate through the pump of about 1 l

min
was calculated.

V.1.4 Filtering & plumbing

We are using two filter housings with a 10 µm and a 5 µm filter. Both were bought
at Thermo Fisher Scientific. A garden pump from the local Bahr Baumarkt is used
to pump water from the connector at the base plate of the LEM through the coarse
and the fine filter and back into the LEM through the top plate.

The connectors, plugs, distributors and valves integrated into the water system
were manufactured by Gardena. The standard hose also belonging to the water
system has a diameter of half an inch.
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Figure V.5: Particle insertion and bubble removing: particles inserted into the con-
tainer will be pumped into the LEM through the six lower propeller units (green);
on the other hand, bubbles which get trapped in one of the six upper propeller
units (red) are pumped into the container, where they leave the system due to their
buoyancy; the 3 valves (V1, V2 &V3) allow the bypass of the pump, which is required
for depressurization of the tank.

V.1.5 Temperature control

Without the cooling system heat would be a major problem of the LEM. Since
the motors are connected to body of the LEM without any insulator in between,
electronic and mechanical heat will raise the temperature of the fluid. For example,
2 kW will increase the temperature of 140 l of water by 12 K in one hour. To control
the temperature in the tank, we glued a PT1001 resistor to each of the top and
bottom plates with silicone. As shown in figure V.7 both are separated by ≈ 4mm
thick layer of silicone from the metal surface. The bias introduced by attaching the
sensors to the cooling plates is surpassed by the errors of the temperature measuring
system, and therefore negligible.

With the help of the circuit shown in figure V.8, the resistance of the PT100 is
converted into a voltage signal. The circuit was adjusted and calibrated such that
a range between 0 ◦C and 50 ◦C can be covered. The result is passed to a 10-bit
analogue-digital converter of a micro-controller (C-Control 2, Conrad). If the moving
average of the temperature over 2 seconds is higher than a user-set value, it opens
a magnetic valve to flush the cooling plates with cooling water. The accuracy is
0.4 K due to the internal noise of the AD–converter of the micro-controller. Using a
micro-controller with less internal noise of the AD conversion will yield better control
of the fluid temperature.

1A PT100 is thin platinum resistor with a resistance of 100 Ω at 0 ◦C and a linear temperature
dependence of their resistance within 0 and 100 ◦C
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magnetic valve

Figure V.6: Left side: schematic of the plumbing system used to fill and filter the
tank: the LEM is filled with deionized water; through an extra inlet at the top and
an extra outlet at the bottom samples can be taken or bigger amounts of chemicals
can be administered to the tank; a pump can transfer the tank content through a
5 µm and a 10 µm filter to remove particles and dirt;
right side: schematic of the cooling system: in opening the magnetic valve the cooling
water can run through the cooling plates mounted to the LEM; the micro-controller
described in section V.1.5 opens the valve after comparing the measured temperature
to a user-specified threshold.

Figure V.7: The PT100 sensor glued to a cooling plate; the wire is passed trough a
former water outlet.

V.1.6 PTV setup

The Particle Tracking Velocimetry system consists of 3 cameras, a laser, a control–PC
and a cluster of several node computers, where the particle tracking program runs.

Figure V.9 shows a sketch of the wiring for the PTV system. Three Phantom V7.2
high speed cameras from Vision Research take 8-bit grayscale movies at frame rates
up to 11.000 fps at a resolution of 512× 512 pixels. The control and download of
the movies is done via ethernet. A frequency generator creates a square wave, which
is passed to a frequency divider. There, the frequency is adjusted to the frame rate
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Figure V.8: Represented is the circuit converting the resistance of a PT100 to a
voltage signal readable by an AD converter:
IC LM317 creates a constant current through the PT100; the voltage drop over
PT100 is amplified 1 : 1 with an operational amplifier (OA) 1 to reduce noise; a
stable offset voltage is created at OA 2; OA 3 subtracts the signal of OA 2 from OA
1 which corresponds to the subtraction of an offset temperature (a PT100 already
has a resistance of 100 Ω at 0◦ C); in the last step OA 4 amplifies the input such
that the maximum signal to be expected corresponds to the maximum input voltage
of the AD converter.

of the three cameras. Then it is passed as a synchronization signal to the latter. A
part of the unreduced output from the frequency generator is also passed to a delay
unit. The delayed signal is then passed to the Q-switch of the laser. The cameras
need a few micro seconds to prepare the electronics before a picture can be taken.
Delaying the laser pulse allows the efficient capture of laser pulses for one frame.
A small reed relay driven by the parallel port allows both to switch on or off the
laser and to externally trigger the cameras. All cameras, the PC and the cluster are
connected to a Gigabit ethernet switch.

Setting frame rate, resolution and other properties is done with a program (named
QTalkCam) running on the control–PC. For the simultaneous recording of three
movies, the same program switches on the laser via the relay and starts the recording
(albeit at slightly different times) for each camera. Due to initial instabilities of
the laser, heat up procedures, etc, the recording goes over a longer period than
necessary for the specified amount of frames. The recording is stopped synchronously
by switching off the laser. After terminating the recording process only a specified
amount of the last frames is downloaded:

A server program (called ph7server5) running on the cluster is waiting to down-
load the movies using the second network interface of the cameras. If the recording
was successful, the control program QTalkCam transfers IPs, basic camera properties,
the number of frames to download and a black–reference from each camera to the
server program, which starts the simultaneous download of the movies. Once the
download of all three movies has finished, ph7server5 signals to the control program
that the next movie set can be started. A third program called controller_node

processes available movie sets according to the PTV algorithm described in sec-
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tion IV.5 with user specified thresholds. The original movies are usually deleted after
computing and storing the trajectory files.

FG

n:1

FD

Q Switch

Interlock
Laser

PC
network 1
network 2

parallel port

Gbit - 
network switch

Cluster
Node 1

Node n

Relay

DU
∆t

Figure V.9: Schematic wiring of the PTV system: The frequency generator (FG)
generates a square wave (blue) with frequency > 10kHz, the signal is passed to a
frequency divider (FD) and divided such that the new frequency corresponds to the
frame rate of the cameras, the divided signal is the synchronization signal for the
cameras; a delay unit(DU) delays the frequency such that laser pulses occur only
after camera electronics are prepared; cameras are controlled via a PC (red), whereas
movie downloading and particle tracking is done on a cluster connected to a second
ethernet card on the cameras (cyan); operating the laser and triggering the cameras
is done via a parallel port driven relay

Camera mounting

The challenge for developing a camera mounting system was to find a design compat-
ible with the non-perpendicular angles between the faces of the LEM. The system
was required to be easily adjustable, yet rigid enough to enable particle tracking
velocimetry without additional position errors. We settled for Linos X95 profiles,
and mounted them with adaptor plates on a platform. The platform consists of two
600 mm× 450 mm aluminum plates with a M6-threaded 25 mm hole pattern from
Thorlabs mounted on a frame built out of 45 mm aluminum profiles (FM-Systeme).

The cameras are attached to the Linos profiles with the help adaptors built by
our machine shop. The camera mounts for the two side-cameras were constructed in
such a way that a rotation will not affect the position of the CMOS-chip. Figure
V.10 shows the camera mount for the top camera. The design enables the camera
to be both tilted and moved in a range of about 3 cm in the direction towards the
LEM.

Figure V.11 shows two pictures of the camera arrangement. After calibration, the
camera position is fixed. Any unintentional movement can be registered by a Matlab
code written by Haitao Xu. This program measures the shift and rotation of the
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image plane with respect to its original position during calibration. It was observed
that the shift after a few weeks was less than a pixel. No rotation of the image plane
could be measured. Therefore, the structure has proven its stability.

Figure V.10: Camera mounts for the top camera:
figure on the left:height and position in y-direction can be changed with the Linos
carriers; the figure on the right: the piece which allows tilting of the camera.

Figure V.11: figure on the left: side view from the construction holding the cameras;
figure on the right: backside view from the structure on which the cameras are
mounted.
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Light

Light is provided by a frequency doubled Nd-YAG laser (DDC technologies) with a
high pulse rate. Its power during the experiments was approximately 30 W at pulse
rates between 10 kHz and 30 kHz. Each camera frame captured several laser pulses.
The beam was expanded via a convex and a concave lens mounted on a tilted Linos
X95 profile. The whole system was aligned in a way that the beam enters the LEM
perpendicular to a face and passes through the center of the volume. For security
reasons the face on the opposite side has to be blocked. Therefore, we mounted an
additional cooling plate onto this site.

Figure V.12: The expanded laser beam illuminating the LEM; a 400 mm convex lens
is sitting close to the window, the two optical components at the left are mirrors

Initially, 12 high power LEDs (Ostar HEX-6, ≈ 1000 lm of white light, Osram)
and 18 less powerful LEDs (Osram) were added to the setup to increase the amount
of light in the measurement volume. However, the attempt was abandoned, since a
lot more LEDs would be needed to register a significant improvement in the total
light available.
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V.1 The Lagrangian Exploration Module

100µm 100µm

42µm 
polystyrene

< 90µm
LiteSpheres

Figure V.13: Used particles seen under a microscope. We found both particle types
to be neutrally buoyant in water.

Particles

In order to use PTV, particles need to be added to the flow. The particles, however,
should not disturb the flow or bias the measurement. To ensure this, the following
properties have to be considered beforehand:

• the amount of light scattered by a particle

• the buoyancy of the particles ( = their density compared to the density of the
surrounding fluid)

• the shape of the particle

• the response time to forces acting on the particle by the flow

• chemical properties

• price and availability

The time scale, τp, in which the particle reacts to changes in the flow, can be
expressed in terms of the Stokes number:

St ≡ τp
τη

(V.1)

where τη is the smallest time scale of a turbulent flow (see section III.6).
In order to estimate τp, one can picture a sphere falling through a fluid. From

experiments it is known that such a sphere will also move some of the surrounding
fluid. In other words, the mass of the sphere is increased. For low Reynolds numbers
the particle is decelerated by the viscous Stokes drag force and accelerated by
gravitation:

St =
ρp + 1

2
ρf

ρf

d2

18 ν

1

τη
=

1

18

ρp + 1
2
ρf

ρf

(
d

η

)2

(V.2)
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where ρp and ρf are the densities of the particle and the fluid respectively, and d is
the diameter of the particle.

For St � 1, the particles react quickly. According to equation (V.2) the ideal
particle would have a density ρp < ρf and a size r < η. However, in our experiments
it is better to match particle and fluid density to avoid buoyancy forces, and thus a
preferred direction of motion for the particles2. Apart from that, the intensity of
the scattered light depends on the diameter squared. A compromise has to be found
between fast reaction time and sufficiently high scattered intensities. In our case,
the particles should be passive tracers of the flow.

Two different particles were chosen for the experiments: sieved hollow glass spheres
(LiteSphere, MO-SCI cooperation) with diameters up to 90µm and 42 µm polystyrene
particles (Duke Scientific). Images of the particles are provided in figure V.13 and
a long exposure picture of illuminated particles in a turbulent flow is depicted in
figure V.14.

The density of the 42µm particles is specified by the manufacturer as 1.06 g
cm3 .

MO-SCI did not specify the density of the LiteSpheres particles. Because we found
both particles to be neutrally buoyant in water, we assume both particle types to
have the same density. Although, the LiteSphere particles are polydisperse, the PTV
system can only detect particles with a diameter & 60µm. Smaller spheres scatter
an insufficient amount of light and are thus not detectable. The maximum diameter
of 90 µm was used to compute the Stokes number, St.

The used Stokes numbers are shown in table VII.1.

Calibration

For the calibration of the PTV system we exchange the top plate of the LEM (as
shown in figure V.17) with the special calibration stage depicted in figure V.16. One
or two linear stages can be mounted on the plexiglas plate. The whole system can
be rotated, and the height of the mask can be adjusted. We built adaptor pieces to
raise and fix the stage.

The masks employed were regular dot patterns with three bigger dots defining
the center. They were created with Adobe Illustrator and printed on transparency
foils. The foil in turn was either ”glued” on to a glass plate3 with either glycerol,
or for smaller areas, high vacuum grease. The inclosure of small air bubbles must
be avoided as they would cause additional reflections that distort the calibration
images. Water entering the gap between glass surface and foil and thus changing the
distance between the two must also be avoided.

Two masks with different dot spacings and sizes were used. One mask had a
spacing between dots of 10 mm and 3 mm dot size, for the other mask the spacing
was set to 2.5 mm and the dot size to 0.9 mm. Background illumination with a
diffusive light source4 resulted in the best image quality.

2It should be noted that the clustering of particles is related to the Stokes number and the densities
ρp and ρf .

3trials with two-component glue or silicon failed
4For instance, a sheet of paper and a halogen bulb
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V.1 The Lagrangian Exploration Module

Figure V.14: A long exposure picture of LiteSphere particles (diameter < 90 µm) in
a medium turbulent flow

For calibration, a mask was moved along one axis within the tank, and short movies
of approximately ten frames were recorded for each position of the mask. Figure
V.15 provides a simple sketch of this setup. The axis along which the calibration
mask is moved, is defined as the x-axis in the experiments. We set x = 0 as the
center of the LEM.

A Matlab code written by Haitao Xu allows the identification of the dots in the
calibration images. Using the three center dots, knowing the dot spacing of the mask,
and the position of the mask in the x−direction, one can connect a set of 3D points
with their projection on the CMOS chip of a camera. The parameters, which relate
the picture on the image plane to the 3D lab system (see section IV.5.2), can be
obtained using the method described in IV.5.3.

Relaxations of the holding structure would shift the cameras and thus the location
of the image planes. For small perturbations it is sufficient to realign the image
planes before the stereo matching step. A Matlab code (written by Haitao Xu) is
used to obtain the average shift and rotation of each CMOS sensor from a PTV
experiment. Before carrying out the real measurements the calibration was refined
by storing shift and rotation in the configuration file. Hence a smaller position error
was achieved.
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y

x

mask

Figure V.15: Schematic top view of the camera arrangement. The three cameras
are orientated at di�erent angles inside the apparatus, such that they focus on the
center of the tank. If the cameras are not arranged perpendicular to each other, the
observable region is a stretched sphere as indicated by the ellipse in the drawing.
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V.1 The Lagrangian Exploration Module

Figure V.16: figure on the left: CAD drawing of the calibration stage with two linear
stages;figure on the right: assembled calibration stage before mounting in the LEM.
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Figure V.17: The calibration stage mounted onto the LEM, note the three aluminum
adaptor pieces needed to fix the calibration stage, illumination of the mask can be
provided by the LED plates or halogen bulbs
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VI Analysis of the Trajectories

VI.1 Calculation of Velocity and Acceleration

Using the PTV technique described in section IV.5 and V.1.6 we get a series of
particle trajectories1.

A trajectory can be represented as the position, x(t), of a particle at each frame t.
The length of a trajectory can range from several ten to a few thousand frames. Noise
and measurement errors ξ(t) bias the measured position. The measured position,
x̃(t), is then

x̃(t) = x(t) + ξ(t) (VI.1)

Both the velocity, u, and the acceleration, a, are needed to calculate structure
functions, correlation functions and other measures. To calculate the velocity v(t)
using the discrete difference between x̃(t) and a time ∆t later

ũ(t) =
x̃(t+ ∆t)− x̃(t)

∆t
= u(t) +

ξ(t+ ∆t)− ξ(t)
∆t

(VI.2)

is sensitive to noise. Consequently, the second derivative is even more sensitive to
noise and measurement errors.

To overcome this issue, one can use a convolution (see Mordant et al [29]) of the
original data, x̃(t), with some kernel function, k(τ), which smoothes the original
data. Such a convolution is defined as:

k ⊗ x̃
∣∣∣
t

=

∞∫
−∞

k(τ) · x̃(τ + t) dτ (VI.3)

In the case of filtering k obeys k ⊗ 1 = 1 and k ≥ 0. A useful rule for convolution is
that the derivative of a convolution equals the derivative of its parts, i.e.

(k ⊗ x̃)′ = k′ ⊗ x̃ = k ⊗ x̃′ (VI.4)

A Gaussian2 kernel in the form k(τ) = 1√
πω

exp− τ2

ω2 smoothes data effectively, and
combined with rule VI.4 it becomes a powerful tool to evaluating derivatives of noisy
data. The velocity is then:

k ⊗ ũ
∣∣∣
t

= k′ ⊗ x̃
∣∣∣
t

=

∫ ∞
−∞

kv(τ) · x̃(τ + t)dτ

with kv =
∂k(τ)

∂τ
= − 2τ√

πω3
exp

(
− τ

2

ω2

) (VI.5)

1These are stored in several hundred to a few thousand trajectory files.
2It is ω =

√
2σ.
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and the acceleration can be computed using

k ⊗ ã
∣∣∣
t

= k′′ ⊗ x̃
∣∣∣
t

=

∫ ∞
−∞

ka(τ) · x̃(τ + t)dτ

with ka =
∂2k(τ)

∂τ 2
=

2√
πω3

(
2τ 2

ω2
− 1

)
exp

(
− τ

2

ω2

) (VI.6)

Since k is known at the beginning, one can precalculate the new kernels kv and ka.
Furthermore, we can limit the integral to the range [−T ;T ] since the contribution of
values decays with exp (−τ 2). Because we have discrete values and not a continuous
function, the integral is evaluated as a sum. To calculate the velocity and acceleration
at time t, for example, we need to evaluate

∑+T
−T kv · x̃(τ + t) and

∑+T
−T ka · x̃(τ + t).

This operation is constant in time and can be done easily by a computer. But,
since we are truncating the integral, we have to normalize the kernel functions. The
discrete functions are

kv(τ) = Avτ exp

(
− τ

2

ω2

)
+Bv and ka(τ) = Aa exp

(
− τ

2

ω2

)[
2τ 2

ω2
− 1

]
+Ba

The parameters Av, Bv, Aa and Ba can be determined using the known derivatives

kv ⊗ 1 = 0 kv ⊗ τ = 1 (VI.7)

ka ⊗ 1 = 0 ka ⊗ τ 2 = 2 (VI.8)

VI.1.1 Calculating Av and Bv

1 =
T∑
−T

kv(τ) · (τ) =
T∑
−T

(
Avτ exp

(
− τ

2

ω2

)
+Bv

)
·τ

= Av

T∑
−T

τ 2 exp

(
− τ

2

ω2

)
⇔ Av =

1∑T
−T τ

2 exp
(
− τ2

ω2

)
(VI.9)

0 =
T∑
−T

kv(τ) =
T∑
−T

(
Avτ exp

(
− τ

2

ω2

)
+Bv

)

= (2T + 1)Bv + Av

T∑
−T

τ exp

(
− τ

2

ω2

)
= (2T + 1)Bv + 0

⇔ Bv = 0

(VI.10)

The sum
∑+T
−T τ

2 exp
(
− τ2

ω2

)
is never negative. However, we know that Av ≈ − 2τ√

πω3 .

Therefore, we have to set

Av = − 1∑+T
−T τ

2 exp
(
− τ2

ω2

) (VI.11)
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VI.1.2 Calculating Aa and Ba

2 =
T∑
−T

ka(τ) · (τ 2) =
T∑
−T

[
Aa exp

(
− τ

2

ω2

)(
2τ 2

ω2
− 1

)
+Ba

]
·τ 2

= Aa

T∑
−T

[
τ 2

(
2τ 2

ω2
− 1

)
exp

(
− τ

2

ω2

)]
+Ba

T∑
−T

τ 2

= Aa

T∑
−T

[
τ 2

(
2τ 2

ω2
− 1

)
exp

(
− τ

2

ω2

)]
+Ba

T (T + 1)(2T + 1)

3

(VI.12)

0 =
T∑
−T

ka(τ) =
T∑
−T

(
Aa exp

(
− τ

2

ω2

)[
2τ 2

ω2
− 1

]
+Ba

)
⇔ Aa =

−(2T + 1)Ba∑T
−T
[
exp

(
− τ2

ω2

) (
2τ2

ω2 − 1
)] (VI.13)

Combining equations (VI.12) and (VI.13) one obtains

2 = Ba

−(2T + 1)
∑T
−T

(
τ 2
(

2τ2

ω2 − 1
)

exp
(
− τ2

ω2

))
∑T
−T
((

2τ2

ω2 − 1
)

exp
(
− τ2

ω2

)) +
T (T + 1)(2T + 1)

3


⇔ Ba = 2

−(2T + 1)
∑T
−T

(
τ 2
(

2τ2

ω2 − 1
)

exp
(
− τ2

ω2

))
∑T
−T
((

2τ2

ω2 − 1
)

exp
(
− τ2

ω2

)) +
T (T + 1)(2T + 1)

3

−1

(VI.14)

To find the right values for Av, Aa and Ba one has to calculate the sums with
given values T and ω. Velocity and acceleration are calculated with different filter

width. The convolution with vectors, e.g. kv ⊗ x̃
∣∣∣
t
, can be calculated by employing

to convolution to each component of the vector. To reduce the uncertainty in the
position, we also smooth the measured position, x̃, with the same T and ω used also
for the velocity.

The analysis of the trajectories is implemented in C++ using object orientated-
programming and standard libraries like std::vector to store trajectories in memory.

VI.1.3 Interpolated points

Due to light intensity fluctuations, particles blocking the line of sight, hardware and
software problems the trajectory can break up into smaller pieces. The PTV code is
able to extrapolate small gaps up to 3 frames ahead and continue if a real point is
close to the extrapolation. The Track Connection method (see section IV.5.7) instead
is able to connect tracks with gaps of several tenth or hundreds of missing frames.
Since such a long interpolation might bias the evaluation, one has to check the
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contribution of interpolated points to the statistics. One attempt is to discard every
velocity and acceleration value with interpolated points more than a certain threshold.
Although this is computationally cheap the bias introduced by interpolated points to
the calculation depends on the shape of the kernel. Thus calculating the contribution
to the kernel would allow to use more points. Let

I(t) =

{
1 if interpolated

0 otherwise

and iv = Cv · ‖kv‖ as well as ia = Ca · ‖ka‖ the test kernel functions. Since they
are kernel functions they have to obey iv ⊗ 1 = ia ⊗ 1 = 1. The influence of an
extrapolation can be limited by discarding calculations with

iv ⊗ I > Ivel,max or ia ⊗ I > Iacc,max

For I(t) = const = 1 the convolution returns 1, for a trajectory containing no
extrapolated points the contribution is 0. Usually experiments are performed with
many frames per τη hence the extrapolation for small gaps won’t introduce big errors
and the extrapolated points can be used.

The analysis code written by Haitao Xu in our group discards a computation if
more than 3 points at a filter window of 27 frames are interpolated. In the worst
case of 3 consequent interpolated points this corresponds to Iacc,max ≈ 0.3 and
Ivel,max ≈ 0.45. To feel certain

Iacc,max = 0.20 and Ivel,max = 0.35

will be used.
The test has to be done only for one component and the acceleration can be tested

before the velocity to avoid redundant calculations.

VI.2 Probability density functions

The probability P of a statistical property x to be within a 6 x 6 b is:

P (a 6 x 6 b) =

b∫
a

p(x)dx with

∞∫
−∞

p(x)dx = 1 and p > 0 (VI.15)

where p(x) is the probability density function (PDF). The k-th moment of a proba-
bility function is defined as:

Mk ≡
∞∫

−∞

p(x)xk dx (VI.16)

and the k-th central moment as:

Ck ≡
∞∫

−∞

p(x) (x− µ)k dx (VI.17)
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VI.3 Subtracting the mean flow field

where µ is the mean value of the pdf and the first moment of p. The second central
moment of the PDF is the variance of the distribution. The PDFs of velocity and
acceleration can be easily created using binning. For the first file being processed the
minimum and maximum value of velocity and acceleration components and particle
positions are found. These intervals are divided into Nbins bins, which are basically
counters. Extra bins are added on both sides so that the statistics are not biased
by the rather random choice of the minimum and maximum. For each velocity and
acceleration value computed the appropriate bin is calculated and the counter is
incremented by 1. Then the probability of measuring a value corresponding to the
i-th bin Xi is:

P (Xi) =
ni
ntot

(VI.18)

where ni denotes the number of counts in this bin and ntot =
∑

i ni the total number
of counts. Using equations (VI.15) and (VI.18) it is:

P (Xi) =
ni
ntot

=

max(Xi)∫
min(Xi)

p(x) dx

≈ p (x) ∆x

⇔ p(x) =
ni
ntot

1

∆x

(VI.19)

where x = max(Xi)+min(Xi)
2

and ∆x = max(Xi)−min(Xi).
To compare different PDFs it is useful to normalize them using the statistical

z-transform. This is done in 2 steps. First the mean µ and standard deviation σ
are calculated using equations (VI.16) and (VI.17). Then the probability density is
renormalized as a function of x−µ

σ
. Thus the renormalised PDF is:

p

(
x− µ
σ

)
=

ni

ntot
∆x
σ

=
ni σ

ntot ∆x
(VI.20)

VI.3 Subtracting the mean flow field

To obtain the fluctuating velocity one has to subtract the mean flow field. Therefore
the measurement volume is subdivided into n× n× n spatial bins. Particles passing
through such a spatial bin will allow to calculate the mean and rms values of
acceleration and velocity. After processing all movies the mean flow field can be
approximated as an interpolation of the obtained mean velocities.

To create a steady mean flow field a trilinear interpolation3 instead of a nearest
neighbor method was chosen as an interpolation method.

It is assumed that only direct neighbors are important. Let C = (x, y, z) be the
point whose value has to be interpolated and CXY Z the eight vortices of a cuboid
around C. The cuboid is rescaled to a cube of edge length one4. X, Y and Z denote

3A trilinear interpolation is a linear interpolation in 3D.
4Therefore it is x, y, z ∈ [0, 1]
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z

x
y

C

Figure VI.1: Trilinear interpolation for a value at point C. The value at a point
is visualised by the size and shape of the circle, green corresponds to the �rst
interpolation i, yellow to the second step j. The cell is a cube with an edge length
of 1.

the coordinates of a corner. Furthermore v(C) denotes the value at position C and
vXY Z the value at a corner CXY Z .

If the number of statistics in bin is not su�cient, the mean over the all usable
spatial bins will be used.

The interpolation is done by following three linear interpolation steps.

1. Interpolate the values along the z-axis. The four interpolated values are:

i1 = v000 + z · (v001 � v000)

i2 = v100 + z · (v101 � v100)

i3 = v010 + z · (v011 � v010)

i4 = v110 + z · (v111 � v110)

(VI.21)

In �gure VI.1 this is visualized by the four green dots. The size of the green
dots is a size between their upper and bottom neighbor.

2. Interpolating between the interpolated points in y direction

j1 = i1 + y (i4 � i1)

j2 = i2 + y (i3 � i2)
(VI.22)

This corresponds to the two yellow circles in �gure VI.1.

3. by interpolating in x -direction we �nd

v(C) = j1 + x (j2 � j1)

= i1 + y (i4 � i1) + x i2 + x y (i3 � i2)� x i1 � x y (i4 � i1)

= i1 (1� x� y + x y) + i2 (x� x y) + i3 (x y) + i4 (y � x y)

(VI.23)
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Combining all equations we obtain

v(C) = v000 + z (v001 − v000)

+ y v110 + y z(v111 − v110)

− y v000 − y z (v001 − v000)

+ x v100 + x z(v101 − v100)

+ x y v010 + x y z(v011 − v010)

− x y v100 − x y z(v101 − v100)

− x v000 − x z(v001 − v000)

− x y v110 − x y z(v111 − v110)

+ x y v000 + y z(v001 − v000)

(VI.24)

Rearranging (VI.24)

v(C) = v000 (1− x)(1− y)(1− z)

+ v001 (1− x)(1− y) z

+ v010 x y (1− z)

+ v011 x y z

+ v100 x (1− y) (1− z)

+ v101 x (1− y) z

+ v110 y (1− x) (1− z)

+ v111 y (1− x) z

(VI.25)

Before calculating Eulerian and Lagrangian statistics the mean velocity field and the
mean acceleration field were subtracted.

VI.4 Linear approximation of the flow field

The mean flow field 〈u(r)〉 can be approximated as:

u ≈ u(r0) + M (r− r0) (VI.26)

where M is an approximation of the velocity-gradient, or Jacobian, ∇u(r0), at the
point r0. In section VII.4.3, the velocity-gradient, M, will be used to calculate the
rate of strain and the local vorticity at r0.

M can be obtained from the mean flow using the following procedure. N velocity

vectors ui =
(
uxi uyi uzi

)
at their corresponding position ri ≡

(
xi yi zi

)
have

been measured. Lets define δi =
(
δxi δyi δzi

)
=
(
xi − rx0 yi − ry0 zi − rz0

)
and

u(r0) =
(
ux0 uy0 uz0

)
. Applying an arbitrary pair ui, δi to equation (VI.26) yields

the following three equations

uxi = ux0 +M11 δ
x
i +M12 δ

y
i +M13 δ

z
i (VI.27a)

uyi = uy0 +M21 δ
x
i +M22 δ

y
i +M23 δ

z
i (VI.27b)

uzi = uz0 +M31 δ
x
i +M32 δ

y
i +M33 δ

z
i (VI.27c)
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Nevertheless, the continuity equation dictates:

M11 +M22 +M33 = 0 (VI.28)

Rearranging equation (VI.26) and employing the constraint (VI.28) gives three
independent overdetermined systems of linear equations:

δx1 δy1 δz1 1
δx2 δy2 δz2 1

...
δxN δyN δzN 1

 ·


M11

M12

M13

ux0

 =


ux1
ux2
...
uxN

 (VI.29a)


δx1 δy1 δz1 1
δx2 δy2 δz2 1

...
δxN δyN δzN 1

 ·


M21

M22

M23

uy0

 =


uy1
uy2
...
uyN

 (VI.29b)


δx1 δy1 1
δx2 δy2 1

...
δxN δyN 1

 ·
 M31

M32

uz0

 =


uz1 + (M11 +M22)δz1
uz2 + (M11 +M22)δz2

...
uzN + (M11 +M22)δzN

 (VI.29c)

where the Mij and ux0 , u
y
0, u

z
0 are unknowns.

For an overdetermined systems of linear equations Ax = b, with A a n × m, x
a m × 1 and b a n × 1 matrix/vector, the inverse of A does not exist if n 6= m.
However, one solution of the system is

x = A+ b (VI.30)

where A+ is the pseudo-inverse of A, which can be calculated from a singular value
decomposition of A. A second solution is the use of an optimization scheme which
finds

min (‖Ax− b‖) (VI.31)

We are using equation (VI.30) to determine the matrix M.

VI.5 Calculation of the Eulerian autocorrelation Rij

and second-order-structure function Dij

Assuming a locally isotropic flow we can compute Eulerian structure functions and
autocorrelation by the following procedure.

Step 1 Subtract the mean velocity field as described in section VI.3.

Step 2 For each frame, f , create a list of all points for which a velocity, u′, was
calculated.
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function Dij

Step 3 Pick two velocity vectors from this list: u�1 and u�2. These vectors are
separated by r · er, where er denotes the unit vector of r.

Step 4 As explained in section III.6, the Eulerian structure functions, Dij(r) and
Rij(r), depend only on the length, r, of the separation vector, r, in a locally
isotropic �ow with subtracted mean �ow. Thus, one can calculate DLL (r) =�
[u�1 · er � u�2 · er]

2〈and RLL (r) = �[u�1 · er] [u�2 · er]�and average the result
employing a binning technique for r.

Step 5 Analogous to the prior step one can gain the transverse structure function
and auto correlation by substituting er for a vector en perpendicular to er.

Step 6 The ensemble average can be computed by using all possible combinations of
points at a time step and doing this for each frame.

A transverse vector en = ea × er with an arbitrarily set vector ea can be used to
obtain the transverse second order structure function and autocorrelation. A second
transverse vector ek can be obtained from ek = en × er. However, the cross product
vanishes for er = ea. Moreover, in the case both when vectors are close to parallel
the measurement error in er results in a bigger uncertainty in en.

Nevertheless, we set ea to be parallel to the z- axis ez to calculate the two normal
components. If er and ez are close to parallel5, they were set en = ex and en = ey.

Of course, one can use the same method to compute also higher order structure
functions, as well as Eulerian measures based on the acceleration.

x

y

z

ϕ

θϕ

Figure VI.2: Sketch of the angular bins to determine a dependence of the structure
functions and autocorrelations on the direction. The direction of the separation
vector, r, is expressed with the help of spherical coordinates �, τ. The structure
functions as well as autocorrelations do not depend on the sign of r, it is su�cient
to map r on a half sphere. The sketch illustrates 8 bins for � and 4 bins for τ. The
area of each bin is the same. Thus, in an isotropic �ow they will be �lled equally.
The left �gure shows a top view of the sphere.

5They are approximately parallel if �z�> 100 · (�x�+�y�)
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In order to check the angular dependence of Dij and Rij one can bin the both
measures according to the spherical coordinates6 of the unit vector er(r = 1, φ, θ).
Since the sign of r is not important, we can map r on a half sphere. Changing the
sign of r can be done by changing the sign of θ and setting φ to φ+ 180◦.

In order to fill the bins approximately evenly, each bin Aθ,φ has to have the same
area. This is achieved by a constant spacing in φ but an adjusted spacing in θ. The
area of the i-th slice (limited by θi and θi−1) of an unit- sphere is

Ai = 2πr(hi − hi−1) = 2π (cos(θi)− cos(θi−1)) (VI.32)

Each slice has to cover

Ai =
Atotal
m

=
2π

m

Combining both we get θi = arccos
(
i
m

)
. The number i of the bin corresponding to

an (arbitrary) angle θ is the first i with θi+1 > θ. A sketch of the distribution of the
bins in provided in figure VI.2.

6It is θ = arccos(er · ez) and φ = arccos
(
‖er · ex‖/

√
(er · ex)2 + (er · ey)2

)
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VII Results

VII.1 Experiments performed

Two arrangements of the PTV system have been used to investigate flows with
different strengths and types of forcing, in each case using the stainless steel propellers.
An overview of the results as well as of the corresponding Stokes numbers is provided
in table VII.1 and table VII.2.

As described in section V.1.2, each propeller is driven by a motor through a 5 : 1
gear. The user of the apparatus will specify the motor frequency, although the
relevant property is the the propeller speed. Therefore, we will use the unit rpm to
refer to the motor speed and Hz to indicate the real propeller speed.

VII.1.1 Big measurement volume experiments

Using 60mm Nikon objectives, a relatively big measurement volume of approximately
16× 10× 10 [cm3] situated in the center of the LEM could be resolved. LiteSphere
particles with a diameter < 90µm manufactured by MO-SCI cooperation were used
as tracers. A picture of the particles is provided in figure V.13 in section V.1.6. The
uncertainty of the stereo-matching process was 86± 46µm.

Clockwise and Counterclockwise Forcing Experiments with all motors at the same
speed were done at +1 Hz (+300 rpm), 1.66 Hz (+500 rpm), +675 rpm, +5 Hz
(+1500 rpm), +7.5 Hz (+2250 rpm), +9.33 Hz (+2800 rpm), +5000 rpm and
−9.33 Hz (−2800 rpm). The difference in the direction of the rotation will
be denoted by clockwise (CW) for positive frequencies and counterclockwise
(CCW) in the other case. The motors of the LEM are able to run at up to
+5000 rpm. However, due to illumination problems we collected less than
400000 points at +5000 rpm. Therefore, this experimental run is excluded.

Anisotropic Forcing The six motors at the top and at the bottom were pushing with
3.33 Hz (+1000 rpm), the six propellors at the ‘equator’ were not rotating.

Random Forcing One experiment was performed using randomly picked frequencies
fi for each motor. Every 30 seconds new frequencies were chosen. From
previous experiments in a French-Washing machine we knew that u′ ∝ f .
Inserting this into equation1 (III.22) yields ε ∝ f 3. Therefore, we enforced

1
12

12∑
i=1

f 3
i = f 3 = (500 rpm)3 and fi ∈ [300 rpm; 700 rpm] to ensure a constant

energy injection rate, ε, comparable to clockwise forcing at 1.66 Hz (+500 rpm).

1ε ∼ U
3

L

67



VII Results

VII.1.2 Small measurement volume experiments

Using 200 mm Nikon objectives, a smaller measurement volume of approximately
3×2×2 [cm3] situated in the center of the LEM could be resolved. 42 µm polystyrene
particles (Duke Scientific) were used as tracers. A picture of the particles is provided
in figure V.13 in section V.1.6. The uncertainty of the stereo-matching process was
19± 6µm.

Clockwise Forcing Experiments with all motors at the same speed were done at
+1 Hz (+300 rpm), 1.66 Hz (+500 rpm), +675 rpm.

Random Forcing The random forcing described in VII.1.1 was repeated under the
same forcing conditions.

In the case of anisotropic and random forcing, the frequencies of the propellers were
not uniform, and thus no clear definition of the motor frequency can be given. We
estimate the effective frequency of random and anisotropic forcing as +1.66 Hz
(+500 rpm) and +3.33 Hz (+1000 rpm) respectively.

VII.2 Selection of the Filter Width for the
differentiating kernel and the parameters for
the track connection code

To use the track connection method [28] described in section IV.5.7, the spatial and
temporal search distance as well as the measurement error have to specified. The
measurement error σp is known from the calibration, and the spatial search distance,
ds, is limited by the average distance between particles. Therefore, we measured the

mean, 〈Np〉, and the standard deviation
〈
(〈Np〉 −Np)

2〉1/2
of particles per frame, Np,

in the biggest trajectory file. Since the size, V , of the observation volume is known,
the spatial search distance ds was set to

ds 6
3
√
V

〈Np〉+
〈
(〈Np〉 −Np)

2〉1/2
(VII.1)

The term 〈Np〉+
〈
(〈Np〉 −Np)

2〉1/2
estimates the maximum number of particles in

the volume, whereas 3
√
V returns the characteristic length of the observation volume.

Equation (VII.1) can be seen as an estimate of the minimum average distance between
particles. The temporal search distance, ts, was varied to determine its optimal value
which allows the code to find the maximal number of connection with a negligible
number of wrong connections. ts was set to 150 frames for all experiments.

As described in section VI.1, the derivatives of a gaussian kernel are used to calculate
velocity and acceleration. The filter width Wf = 2T + 1 and the filter variance ωf
have to be chosen such that the statistics obtained do not depend on the choice of
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VII.2 Selection of the Filter Width for the differentiating kernel and the parameters
for the track connection code

Wf and ωf . Also, they should be as small as possible to use the maximum amount
of data and to see short time events. Each experiment has been processed with
different filter widths and a ratio of Wf to ωf of approximately 3 to determine the
optimal filter widths. The ratio was chosen according to previous experiences of our
group with the PTV system (see e.g. [30]).

The measurement errors in position strongly influence the computation of prop-
erties based on velocity and acceleration. It can be shown [17] that applying the
acceleration convolution filter on pure delta-correlated (white) noise produces an
acceleration variance which is

〈a2〉 ∝ W−5
f (VII.2)

For longer filter windows the noise contribution gets smaller until the curve shows a
kink at a certain W acc

f . At this point the contribution of the filter width is such that
the contribution of noise is small, and short time events of acceleration can still be
measured. Therefore, the r.m.s. of acceleration and the theoretical −2.5 power-law
are log-log plotted to determine the optimal filter width W acc

f . Because showing all
14 runs would go beyond the aim of this text, the run at +9.33 Hz (+2800 rpm)
(figures VII.1 and VII.2) has been picked as a representative example.
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Figure VII.1: Velocity dependence on the filter width, Wf = 2T+1, for the +9.33 Hz
(+2800 rpm) run. Velocity statistics are less sensitive to the filter width than
acceleration statistics (see figure VII.2).
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Figure VII.2: Acceleration dependence on the filter width, Wf = 2T + 1, for the
+9.33 Hz (+2800 rpm) run. Note the kink in the acceleration rms at a filter width
of approximately 40 frames;
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VII.3 Basic properties of the apparatus

Before the apparatus can be used to investigate to properties of turbulent flows, it
has to be characterized. This section presents basic properties such as the Reynolds
number and the Kolmogorov scales for different propeller speeds and different ways
of driving the flow.

The observation volume was divided in n× n× n sub-volumes. For each sub-volume
a PDF of the velocity was built from the trajectories passing through it. Thus,
each PDF contains a temporal average of the velocities in the sub-volume. As
described in section VI.3, the moments of these PDFs define the Eulerian mean flow
field. We chose values of n for each experiment such that the sub-volumes contain
sufficient data. A global PDF can then be built by summing the histograms from all
sub-volumes. Finally, we chose to consider only those sub-volumes which contained
more than 1000 data points. The requirement of a minimum number of data points
reduces the contribution of noise in the measurement system to the observations.

To avoid ambiguity in the describing the flow the following definitions will be
used:

Mean velocity We define the mean velocity, 〈u〉, as the first moment of the global
velocity PDF.

Fluctuation velocity The fluctuating velocity, u′, is estimated as the standard devia-
tion (r.m.s.) of the global velocity PDF.

Spatial inhomogeneity Spatial inhomogeneities in the mean flow can result in flows
from different sub-volumes canceling each other, and so the full influence of
the mean flow may not be evident by considering the (global) mean velocity.
Therefore, we define the spatial inhomogeneity, h, as the r.m.s., taken over the
different sub-volumes, of the Eulerian mean velocity field.

Characteristic velocities

The dependencies of the fluctuating and mean velocities on the propeller frequency, f ,
are shown in the figures VII.3 and VII.5. The fluctuating velocity, u′, is on the order
of several cm

s
, whereas the mean velocity is usually less than 20% of the fluctuating

velocity. We found that both the mean velocity, 〈u〉, and the fluctuating velocity, u′,
grow with increasing propeller speed, f . In the case of the fluctuating velocity, and
for clockwise forcing, we observe a linear growth with the propeller frequency. In
other words

u′ ∝ f (VII.3)

This is in good agreement with results obtained by our group (e.g. [30]) in a French-
Washing machine. We observe that counterclockwise forcing creates smaller turbulent
fluctuations than clockwise forcing. Furthermore, random forcing is slightly more effi-
cient in creating turbulent fluctuations than clockwise forcing at 1.66 Hz (+500 rpm)
although it was designed to inject the same power into the fluid. For clockwise forcing,
the propellors create jets directed toward the center of the apparatus, whereas for
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VII.3 Basic properties of the apparatus

counterclockwise forcing, the propellors pull fluid away from the center toward the
vertices of the icosahedron.

As depicted in figure VII.4, the spatial inhomogeneity, h, of the flow increases
with the propeller speed. However, the fluctuating velocities are 3 to 4 times larger
than the corresponding spatial inhomogeneities at all propellor speeds.

As an example, figure VII.7 shows a cut through the Eulerian fields of mean
and fluctuating velocities at +1.66 Hz (+500 rpm). Inside the observed area the
magnitude of the fluctuating velocity, |u′(x, y ≈ 0, z)|, is uniform. Similar behavior
was observed for the Eulerian mean velocity field, 〈u〉(x, y ≈ 0, z). We attribute the
spatial fluctuations occurring near the borders of the region to insufficient statistics,
since the number of trajectories is much lower at the edge of the illuminated region
than in the middle.

According to figure VII.6, no pronounced differences in the x, y and z components
of u′ are found for low propeller speeds. Furthermore, anisotropic forcing created
pronounced anisotropy in the fluctuating velocities as expected. We observed also
that the flow tends to become more anisotropic with increasing propeller speeds.
This might be because our propellers are self-made. Differences in the angles of the
propeller vanes, between propellors, can be understood as being equivalent to the
propellors rotating at different frequencies, which leads to an inhomogeneous and
anisotropic injection of energy. As explained below, we found that the energy transfer
rate is proportional to frequency cubed. Consequently, deviations between propellers
will become increasingly pronounced as the propellor frequency is increased.
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Figure VII.3: Mean velocity versus the propeller frequency. The mean velocity
increases with the propeller speed and the difference between the three components
of 〈u〉 become more distinct. However, the mean flow is less than 20% of the
fluctuating velocity.
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Figure VII.4: Spatial inhomogeneity, h, of the mean flow field versus the propeller
frequency. The mean flow becomes spatial inhomogeneous with increasing propeller
speed. The fluctuating velocities, however, are still 3 to 4−times stronger than the
corresponding spatial inhomogeneity of the velocity field.
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Figure VII.5: Fluctuating velocity versus the propeller frequency. For clockwise and
random forcing the r.m.s. of the velocity scales linearly with the propeller frequency.
CCW forcing produce a less turbulent flow regime, and anisotropic forcing created a
less isotropic fluctuating velocity.
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Figure VII.6: Anisotropy of the fluctuating velocity versus the propeller frequency.
The ratios u′x

u′y
and u′x

u′y
are nearly unity for small propeller frequencies. Thus the

turbulent fluctuations are isotropic over the observation volume. With increasing
propeller speed, the flow becomes anisotropic. This might be because our propellers
are self-made. Differences in the angle of the propeller vanes can be understood
as forcing with different frequencies and thus an inhomogeneous and anisotropic
injection of energy. As explained later, the energy transfer rate is proportional to
frequency cubed. Consequently, deviations between propellers will become detectable
at sufficiently high frequencies. As exspected, we observed that anisotropic forcing
creates a flow with a pronounced anisotropy.
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Figure VII.7: xz−cut through the Eulerian field of mean and fluctuating velocity at
1.66 Hz (500 rpm). It should noted that the uncertainty at the border is bigger
because less data was collected in these regions.
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Energy transfer rate

We calculated the Eulerian second and third order structure functions as is described
in section VI.5. Taking the Kolmogorov constant C2 = 2.1, together with the
equations2 (III.39), (III.38) and (III.42), enables us to compute three separate
estimates of the energy transfer rate, ε(r), with its corresponding error estimate σε.
For that purpose, we determine the inertial range, r1 . . . r2, from the width of the
plateau of each appropriately compensated structure function. The plateau region is
typically only a few tens of η long. Once the inertial range is known we compute

ε ≈ 〈ε(r)〉
∣∣∣
r=r1...r2

and σε ≈
〈
(ε(r)− 〈ε(r)〉)2〉1/2

∣∣∣
r=r1...r2

for the second order structure functions, denoted ε(DLL) and ε(DNN ), and the third
order structure function, denoted ε(DLLL). As an example, the energy transfer rate,
ε(r), with clockwise forcing at 2.25 Hz (+675 rpm), is provided in figure VII.8. It
should be noted that ε(DLLL) shows more scattering than ε(DLL) and ε(DNN).

Figure VII.10 shows the energy dissipation rate for the experiments we performed.
The energy dissipation rate, ε, computed from the small measurement volumes were
approximately 30% of their counterparts acquired using the big observation volume.
We found random forcing to be slightly more efficient than clockwise forcing at
1.66 Hz (+500 rpm), and forcing at −9.33 Hz (−2800 rpm) to be less efficient than
the propeller speed of +9.33 Hz (+2800 rpm).

To test whether the differences between small and big observation volume runs are
not due to the subtraction of the mean flow field, we calculated the Eulerian second
and third order structure functions without prior subtraction of the mean flow. As an
example, the energy transfer rate, ε, with clockwise forcing at 2.25 Hz (+675 rpm)
(bMV) is displayed in figure VII.9. The second order structure functions are in
good aggrement, whereas the third order structure function differs for separation
distances bigger than approximately 200 η. The fact that the differences are small
is additional evidence that the mean velocity field is negligible compared to the
turbulent fluctuations, and that the difference in the results between the large and
small observation volume runs is not due to the subtraction of the mean flow field.

2The equations are ε(r) ≈
(

DLL

C2

)3/2
1
r =

(
3DNN

4C2

)3/2
1
r and DLLL(r, t) = − 4

5ε r.
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Figure VII.8: Energy transfer rate ε(r) at forcing with 2.25 Hz (+675 rpm). Figure
above: Energy transfer rate ε computed from the Eulerian structure functions at
2.25 Hz (bMV) forcing; figure in the middle: only points falling within a sphere
with radius 1.2 cm where used for the calculation; the figure at the bottom: Energy
transfer rate ε computed from the Eulerian structure functions for the same forcing
but with the small measurement volume. The size of the small measurement volume
is comparable to the size of the sphere. Although the forcing is the same, ε in the
small measurement volume is approximately 30% of the value in the big measurement
volume. However, the conditioned data (figure in the middle) does not show this
behavior.
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Figure VII.9: ε(r) at forcing with 2.25 Hz (+675 rpm) without subtracting the mean
flow. The energy transfer rate computed from the second order structure function are
comparable to the figure VII.8. ε(DLLL) is more affected by the mean flow field, but
for separation distances up to 200 η still comparable. Thus, the difference between
small measurement volume runs and big measurement volume runs is not due to the
subtraction of the mean flow. Furthermore, it shows that the mean flow is small
compared to the turbulent fluctuations in velocity.

Scaling of the energy transfer rate and the Kolmogorov scales

In order to verify that the data are reasonable, we consider the scaling of the energy
transfer rate and the Kolmogorov scales with the forcing frequency. According to
equation3 (III.22) and the observation that u′ ∝ f ,

ε ∝ f 3 (VII.4)

Therefore, the energy transfer rate should scale with the frequency as a power law
with exponent 3. The two dashed lines in figure VII.10 are power law fits to the
clockwise forcing data. Both the experiments in the big and the small observation
volume show the predicted power law scaling for clockwise forcing. Because the
clockwise forcing in both the big and the small observation volumes showed the
predicted scaling it is not possible to falsify one. However, we can not explain the

3It is ε ≈ u′3

L
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difference between the two. It is planned to perform additional experiments to verify
to difference between the two observation volume runs.

Figures VII.12 and VII.11 show the Kolmogorov time and length scales. According
to the equations (III.25) and (III.23), they scale as

η ∝ ε−1/4 ⇒ η ∝ f−3/4 (VII.5)

and
τη ∝ ε−1/2 ⇒ τη ∝ f−3/2 (VII.6)

respectively. In both cases, we found good agreement between our measurements
and the prediction.
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Figure VII.10: Energy transfer rate ε versus motor frequency. ε was independently
calculated from DLL , DNN and DLLL using equations (III.39) and (III.42). The two
lines show power-law fits to the CW forcing data of the big and the small observation
volume runs. In both case we found that ε ∝ f 3. That is in good agreement with
f ∝ u′ and ε ∝ u′3. The energy dissipation rate in the small measurement volume
experiment is significantly smaller than for the big measurement volume runs.

83



VII Results

100 101

10−4

10−3
η vs propeller speed

effective propeller frequency [Hz]

η
 [m

]

CW forcing, bMV: sMV:

Random forc., bMV: sMV:

CCW forcing: Anisotropic:

power law �t to  CW (bMV): 

power law �t to  CW (sMV): 

exponent -0.78

exponent -0.75

Figure VII.11: Kolmogrov length scale η versus motor frequency. η was calculated
from the energy transfer rate ε shown in figure VII.10. Because it is η ∝ ε−1/4 and
ε ∝ f 3, η should scale with f−0.75. The two dashed lines shows power law fits to
the clockwise forcing data. The observed scaling is in good agreement with the
prediction.
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Figure VII.12: Kolmogrov time scale τη versus motor frequency. τη was calculated
from the energy transfer rate ε shown in figure VII.10. Because it is τη ∝ ε−1/4

and ε ∝ f 3, τη should scale with f−1.5. The two dashed lines shows power law fits
to the clockwise forcing data. The observed scaling is in good agreement with the
prediction.
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Integral length scale and Reynolds number

In principle, it is possible to measure the integral length scale, L, using the Eulerian
auto correlation and equation4 III.47. However, since there is no analytical prediction
for the autocorrelation functions, in order to make this measurement accurately, one
would need a measurement volume with a size of several integral length scales. Since
this condition is not satisfied in our experiment, we produce two estimates of the L.
First, we estimate L using equation (III.22):

L ≈ u′3

ε
(VII.7)

Second, since the longitudinal Eulerian autocorrelation function, f(r), showed an
exponential decay over a region of several centimeter, we extrapolated the observed
autocorrelation function using an exponential fit. We then estimate the L by
integrating the exponential fit. The different values of the integral length scale are
displayed in figure VII.13. In the big measurement volume the estimates of L from
this second method were approximately 4 cm, and showed only a small dependence
on the forcing. In comparison, the values from equation (VII.7) were a few times
larger than the values obtained from f(r). Note that the size of the big measurement
volume is of the same order of magnitude as the integral length scale.

Equation (III.22) can be used to calculate the Taylor scale Reynolds number, Rλ:

Rλ =

√
15
u′ L

ν
=

(
15

ν

)1/2

ε−1/2 u′2 (VII.8)

Figure VII.14 shows the estimates of the Taylor scale Reynolds number. Rλ ranging
from approximately 150 to 370 have been achieved. No prediction on the dependence
of Rλ on the frequency can be made, unless we assume that the integral length scale
is independent of frequency. In this case Rλ should scale with f 1/2, according to
equations (VII.4) and (VII.3).

4LLL ≡
∞∫
0

f(r, t)dr
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Figure VII.13: Integral length scale, L, versus motor frequency. L was calculated
from the energy transfer rate, ε, and the fluctuating velocity, u′. Because L ∝ ε−1

and the fact that energy transfer rate is smaller for the small measurement volume
runs, the integral length scale of these experiments is bigger. The integral length
scale is on the order of magnitude of 10 cm. This is comparable to the size of the
big measurement volume.
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Figure VII.14: Taylor scale Reynolds number, Rλ, versus motor frequency. Rλ was
calculated from the energy transfer rate, ε and the fluctuating velocity, u′. The
experiments covered a range from Rλ = 150 to 370. Forcing at higher propeller speed
should enable us to reach Rλ ≈ 500.
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Summary

Tables VII.1 and VII.2 provide a summary of the basic properties of the apparatus
at different forcing frequencies. σε and the standard deviation in the components of
u′ were used to estimate the errors of the listed measures.

The flow of the Lagrangian Exploration Module is close to isotropic and the turbulent
fluctuations are three to ten times stronger than the mean flow. For propeller
frequencies below 9.33 Hz (1000 rpm), the mean velocity field is close to uniform and
the mean flow is on the order of a mm

s
. Thus, the flow is homogenous in this regime.

Moreover, the energy transfer rate, as well as the Kolmogorov scales, measured
for the big observation volume follow the predicted power laws. In addition, the
size of the big measurement volume is comparable to the integral length scale of
the flow. However, we observe that the energy transfer rate measured in the small
observation volume is significantly smaller than in the big measurement volume. This
is problematic since we only changed the method of making measurements, and we
could not find a way to invalidatet one data set. Therefore, it is planned to perform
additional experiments to explore the difference between the two observation volume
runs.

Further investigations of the properties of the apparatus are provided in the
following sections.

Table VII.1: Energy transfer rate and Kolmogorov scales of the performed
experiments

speed at ε η τη Rλ St
propeller motor

[Hz] [rpm] [m2 · s−3] [µm] [ms]

b
M

V

+1 300 (3.24± 0.15) · 10−5 420± 5 175± 4 150± 10 4 · 10−3

+1.66 500 (2.14± 0.03) · 10−4 261± 1 68± 0.5 195± 10 1.0 · 10−2

+2.25 675 (6.3± 0.1) · 10−4 200± 2 40± 1 200± 10 1.7 · 10−2

+5 1500 (5.2± 0.75) · 10−3 120± 4 14± 1 210± 45 4.9 · 10−2

+7.5 2250 (1.4± 0.2) · 10−2 91± 4 8.4± 0.6 300± 60 8.5 · 10−2

+9.33 2800 (3.6± 0.5) · 10−2 73± 3 5.3± 0.3 330± 70 13 · 10−2

−9.33 −2800 (3.8± 1.4) · 10−3 128± 13 16± 3 170± 45 4.3 · 10−2

sM
V

+1 300 (1.14± 0.02) · 10−5 540± 8 290± 8 190± 20 5 · 10−4

+1.66 500 (7.9± 0.6) · 10−5 335± 6 112± 5 270± 15 1.4 · 10−3

+2.25 675 (1.4± 0.2) · 10−4 290± 10 85± 6 370± 30 1.8 · 10−3

Anisotropic (1.14± 0.17) · 10−3 170± 7 30± 3 250± 80 2.4 · 10−2

Random (sMV) (8.5± 1.5) · 10−5 325± 14 105± 8 305± 30 1.4 · 10−3

Random (bMV) (2.74± 0.03) · 10−4 245± 1 60± 1 210± 5 1.2 · 10−2
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Table VII.2: Integral length scale, L, and characteristic velocities of the performed
experiments.

speed at 〈u〉 u′ h L
propeller motor

[Hz] [rpm] [mm · s−1] [cm · s−1] [cm · s−1] [cm]

b
M

V

+1 300 (−0.6| − 1.1|+ 0.3) (1.45|1.54|1.50) (0.2|0.2|0.2) 10± 1
+1.66 500 (−1.3| − 2.9|+ 0.0) (2.72|2.80|2.64) (0.2|0.2|0.2) 9± 1
+2.25 675 (−5.1| − 1.0| − 1.7) (3.61|3.49|3.66) (0.4|0.4|0.5) 7± 1
+5 1500 (−4.6| − 8.4| − 2.8) (7.15|5.79|5.78) (0.9|0.9|1.0) 5± 1
+7.5 2250 (−10.8| − 9.9| − 14.8) (11.0|8.8|9.2) (1.7|1.7|2.2) 6± 2
+9.33 2800 (−18| − 4.2| − 11.9) (14.4|11.8|11.6) (1.9|2.3|3.1) 6± 2

−9.33 −2800 (+8.2| − 9.9| − 9.8) (5.83|4.69|5.39) (1.1|1.2|1.5) 4± 2

sM
V

+1 300 (−0.5| − 1.4| − 0.6) (1.40|1.27|1.26) (0.1|0.1|0.1) 19± 3
+1.66 500 (−1.8| − 1.3| − 2.1) (2.53|2.54|2.44) (0.1|0.2|0.1) 20± 2
+2.25 675 (−0.9| − 3.3| − 0.1) (3.47|3.33|3.26) (0.2|0.2|0.1) 27± 5

Anisotropic (−3.1| − 2.0|10) (4.86|3.69|5.50) (0.8|0.8|1.2) 9± 5

Random (sMV) ( 0.0| − 3.0| 0.0) (2.82|2.76|2.61) (0.2|0.2|0.1) 23± 5
Random (bMV) (−1.0| − 2.1|+ 1.5) (2.98|3.05|2.99) (0.2|0.2|0.3) 10± 1

VII.4 Influence of the forcing

The LEM provides twelve propellers which can be controlled independently. It is
worthwhile to investigate the influence of the forcing on the flow. As discussed in
section VII.1 four types forcing were chosen to be tested. However, the quality of
the data obtained only allows a detailed comparison between forcing at 1.66 Hz
(+500 rpm) and random forcing in the big observation volume.

The random forcing was designed to ensure a constant energy injection rate. Since
u′ ∝ f (equation (VII.3)) and ε ∝ u′3 (equation (VII.4)), we enforced

1

12

12∑
i=1

f 3
i = f 3 = (500 rpm)3 with fi ∈ [300 rpm; 700 rpm] (VII.9)

where fi is the frequency of the i−th motor. Every 30 seconds new frequencies were
randomly chosen. This time step is of the order of ten eddy turnover times.

VII.4.1 Isotropy and homogeneity

One way to test the isotropy and homogeneity of the flow is provided by the Eulerian
autocorrelation. Equation5 (III.46) had been derived assuming an isotropic and

5 g(r) = f(r) + r
2

(
∂
∂rf(r)

)
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homogeneous flow.

g(r) = f(r) +
r

2

(
∂

∂r
f(r)

)
=

1

2 r

∂

∂r

(
r2 f(r)

)
⇔ f(r) =

2

r2

r∫
0

x g(x)dx

(VII.10)

The rearranged equation enables us to compute a prediction of f from the measured
g. With the help of a discrete differentiation of f , a prediction of g is also possible.
However, the prediction of g is more effected by noise than the prediction of f .
For easier reading the predictions are denoted fth and gth, whereas the measured
functions are called fexp and gexp.

We did observe that both
∣∣∣fth−fexpfexp

∣∣∣ and
∣∣∣gth−gexpgexp

∣∣∣ differ less than 15% for separation

distances smaller between 3 cm to 5 cm for clockwise forcing. As an example, the
Eulerian autocorrelation at forcing with 2.25 Hz (+675 rpm) (bMV) is depicted in
figure VII.15. Furthermore, figure VII.15 shows that f seems to follow an exponential
decay law for r < 9 cm.

For further investigation on the isotropy, we plotted the dependence of the
autocorrelation on the direction of the separation vector. With the help of spherical

coordinates the direction, er, was expressed as er =

 φ
θ

r = 1

. Figure VII.16 shows

f and g for random forcing (bMV) conditioned on different values of φ and θ. Since
the conditioned autocorrelation used less data than the total average, the first is
more affected by measurement errors. However, both showed to be independent of
the direction of the separation vector.

Thus, the flow shows good isotropy over ranges up to 8 cm. Again, this is on the
order of the big measurement volume and also comparable to the integral length
scale of the flow.
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Figure VII.15: Eulerian autocorrelation at 2.25 Hz (+675 rpm) (bMV) forcing. The
top figure shows the calculated and the measured autocorrelation curves f and g,
whereas the figure at the bottom displays the relative deviation to the measured
curves. The two dotted lines mark a region of ±15% deviation. Because the curves
fall within these bounds up to separations distances of approximately 4 cm, the flow
in this regime can be considered locally isotropic.
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Figure VII.16: Eulerian autocorrelation conditioned on direction at random (bMV)
forcing. The Eulerian autocorrelation was conditioned on the direction of the separa-
tion vector r in spherical coordinates (φ, θ). The top figure shows the dependence
of f and g on φ, and the bottom figure plots the dependence of f and g on θ. In
the latter figure, five bins for θ were used and the colors denote red: θ ∈ [1.37|1.57],
green: θ ∈ [1.16|1.37], blue: θ ∈ [0.92|1.16], yellow: θ ∈ [0.64|0.92], cyan: θ ∈ [0|0.64].
Differences between the curves are probably due to the reduced amount of used
data points per curve. However, the Eulerian autocorrelation functions f and g
are independent of the direction. Thus, the Lagrangian exploration module creates
isotropic turbulence.
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VII.4.2 Probability density functions

PDFs of velocity and acceleration were measured and compared. In good agreement
with [29], the measured acceleration PDF from the big observation volume show
the same shape as the acceleration PDF measured with the silicon strip detector
experiment [31] in their French-Washing-Machine. Furthermore, we noticed that for
the big measurement volume the shape of the acceleration PDF did not depend on the
forcing. As an example, the acceleration PDF of +500 rpm in the big measurement
volume is provided in �gure VII.17.

However, the PDFs of velocity were not gaussian. Their shape is comparable to
the axial velocity PDF obtained in a French-Washing machine [30]. Furthermore, we
noted minor changes in the velocity PDF due to the forcing. Figure VII.19 and VII.18
display the velocity PDF of anisotropic forcing and 1.66 Hz (+500 rpm) forcing
(bMV). In the anisotropic case, y and z�component of the velocity distribution seem
to follow PDF (u��u�) ∼ exp (��u��u��). The curves of the 1.66 Hz (+500 rpm)
run are smoother.
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Figure VII.17: Probability density function of the acceleration at R� � 200. The
curve was computed from data of the +1.66 Hz (+500 rpm) (bMV) run. The dashed
curve is the acceleration PDF (R� = 690) published in [29]. The less distinct tails
of the acceleration in the LEM are probably due to the smaller temporal resolution
used and the less intense turbulence level.
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Figure VII.18: Probability density function of the velocity for the +500 rpm (bMV)
run. The PDF of velocity is clearly not Gaussian. Unlike the velocity PDF of
anisotropic forcing (see �gure VII.19), the distribution at u � �u�is smooth.
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Figure VII.19: Probability density function of the velocity for the anisotropic run.
No Gaussian velocity distribution was observed, the PDF of each velocity component
shows a kink at the �u�. Moreover, y and z�component of the velocity distribution
seem to be proportional to exp (��u��u��).
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VII.4.3 Mean-flow field

The Eulerian mean velocity field has been measured as described in section VI.3.
For small distances between r0 and r we can approximate the mean flow, u(r), as

u(r) ≈ u0 + M (r− r0) (VII.11)

where u0 is the zeroth order of the Taylor expansion6 and M is the Jacobian7, ∇u(r0),
of the velocity field at r0. The fitting procedure described in section VI.4 allows us
to compute the Jacobian M and u0. All points lying within a sphere of radius 5 cm,
which was located at the center of the measurement volume, were included in the
fitting process.

The Jacobian contains two physical properties: the symmetric part of M is the rate
of strain tensor

Sij =
1

2

(
∂ui
∂xj

+
∂uj
∂xi

)
(VII.12)

whereas the antisymmetric part contains the rotation tensor

Ωij =
1

2

(
∂ui
∂xj
− ∂uj
∂xi

)
(VII.13)

of the fluid.
σ =

(
σ1 σ2 σ3

)
denotes the three eigenvalues8 of the rate of strain tensor S. The

continuity equation dictates

σ1 + σ2 + σ3 = 0 (VII.14)

Consequently, the rate of strain is fully described by two of its eigenvalues and their
corresponding eigenvectors. We will use sorted eigenvalues, i.e.

σ1 > σ2 > σ3 (VII.15)

The local vorticity of the flow is defined as:

ω =

 ω1

ω2

ω3

 = ∇× u (VII.16)

Expressing ω in terms of Ωij it is

ω1 = 2 Ω32 , ω2 = 2 Ω13 and ω3 = 2 Ω21 (VII.17)

A visualization of the mean flow field is provided in section VII.3 in figure VII.7.

6It is u0 ≈ 〈u〉(r0).
7or velocity-gradient tensor
8In order to avoid confusion with the Taylor micro scale, σ instead of λ will be used to denote the

eigenvalues of the rate of strain tensor.
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Comparison between random and clockwise forcing

For the forcing at 1.66 Hz (+500 rpm) and random forcing (both big observation
volume runs), we stored the mean flow field for each trajectory file. This enables
us to investigate the rate of strain (σ1 and σ2), the local vorticity (ω1, ω2, ω3) and
u0 with respect to their evolution with increasing number of collected data points.
Because the observation time is only a few seconds but the time to download (and
process) the raw movies is several minutes, it is not meaningful to use the real time
for investigating the evolution. Therefore and also because the averaging process
depends only on the number of data points but not on real time, the number data
points collected was chosen as a measure of time.

Figures VII.20, VII.21 and VII.22 show the convergence of the investigated
properties for an increasing amount of collected data. The three plots show that all
of the properties approach their mean value after approximately 2 · 107 data points.
This corresponds to approximately 1 GB to 3 GB of raw data. After reaching this
first point, they change much slower or settle.

In both experiments u0 differed from 〈u〉9 by less than 1mm
s

in each component.
This corresponds to a spatial homogeneous flow within the sphere used in the fitting
procedure.

We observe, that all the three eigenvalues of the rate of strain tensor are non-
negliglibe. If one eigenvalue is negligible, this corresponds to a flow which is stretched
in (exactly) one direction and contracted along (exactly) one direction perpendicular
to the first. Thus, we observe a three-dimensional mean flow field and no two-
dimensional flow pattern. Furthermore, we find that σ2 and σ3 are negative with
both forcings.

The magnitude of the rate of strain VII.21 and the local vorticity VII.22 are both
on the order of several 1

100
1
s
; whereas random forcing results in a less rotating mean

flow. Also we note that σ1(Randomforcing) < σ1(+500 rpm forcing). However,
the difference between the two is small.

It is also possible to measure the rate of strain, rotation and velocity by using the
fitting method to determine the velocity gradient and u0 on a small subset of the
data. We divided the time measured (characterized by the number of data points)
into 50 consequent subsets which contain approximately the same amount of data
points. Each subset corresponds to 1 to 2 hours of measurement time. They enable
us to compare snapshots of the mean flow to the long time averaged flow field.

Figure VII.23 displays the short-time-averaged |u0| for forcing with 1.66 Hz
(+500 rpm) and random forcing. In both cases, |u0| ranges from 2 to 10 mm

s
, which

is several times bigger than its corresponding value obtained from the long time
averaged velocity field. The magnitude observed was the same for the two forcings.

The magnitude of the local vorticity, |ω|, calculated from the short-time averaged
velocity field, is provided in figure VII.24. The vorticity is between 0.05 and 0.25
1
s
. That value, however, is several times bigger than |ω| obtained from the long

time average of the Eulerian velocity field. The magnitude of the vorticity was

9calculated form the velocity PDFs
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approximately the same for both ways of driving the flow. Thus, the behavior of |ω|
is comparable to |u0|.

The short-time averaged eigenvalues of the rate of strain tensor are depicted in
figure VII.25. The magnitude of the rate of strain is approximately two to three
times bigger than the corresponding value of the long time averaged mean field.
Surprisingly, the second eigenvalue10, σ2, of the rate of strain tensor fluctuates from
close to zero to positive values. The σ2 computed from the long time average velocity
field showed σ2 < 0. If σ1 and σ2 are positive then one can picture a sphere which is
stretched to a pancake-like shape. Its volume does not change due to the continuity
equation. If σ2 and σ3 are both negative, the sphere mentioned before would be
deformed to cigar shaped body. It is worthwhile to note that Xu et al [32] observed
that the instantaneous rate of strain tensor in intense turbulence shows to two
positive eigenvalues.

For a better comparison, we provide σ2
σ1

and σ3
σ1

in figure VII.25. Although we
observed that random forcing shows σ2

σ1
≈ σ3

σ1
for the long time averaged mean flow

field, we found
∣∣∣σ2σ1 ∣∣∣ ≈ 0 and consequently σ3

σ1
≈ −1 in the case of short-time averaged

measurements.

The short-time averaged velocity field shows no difference between forcing with
+1.66 Hz (+500 rpm) and random forcing. Thus, it is either not possible to determine
differences between both forcings with the measurement techniques employed or the
mean flow does not change for small perturbations to its creation. The latter would
coincide with Kolmogorov idea that the turbulence is independent of the forcing
and only depending on the energy transfer rate for small regions far away from the
boundaries and singularities of the flow.

However, the long-time averaged velocity field reveals that random forcing creates
a less rotating mean flow field. It could be that forcing with +1.66 Hz (+500 rpm)
creates a big, slowly rotating whirl in the LEM which is less pronounced with random
forcing. For a further investigation of the Eulerian flow field, either particle tracking
velocimetry with much higher seeding densities or tomo-PIV should be considered as
possible measurement techniques. The use of tomo-PIV would enable us to measure
the rate of strain and the vorticity with better accuracy at time intervals much
shorter than the eddy-turn-over time, thus deeper insight in the difference between
the two ways of driving the flow.

10The eigenvalues are sorted, i.e. σ1 > σ2 > σ3. Thus, σ1 > 0
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Figure VII.20: Evolution of u0 with the number data points measured. The velocity,
u0, approaches its mean value after approximately 2 · 107 data points used. This
corresponds to approximately 1 GB to 3 GB of raw data. After reaching this first
point u0 changes much slower to a final velocity on the order of a mm

s
. That value

agrees well with the mean velocity obtained from the PDF of u (see section VII.3).
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Figure VII.21: Evolution of rate of strain with the number data points measured.
The rate of strain characterized by its eigenvalues σ1, σ2, σ3, is approaching a value
on the order a 1

20 s
for both random forcing and forcing with 1.66 Hz (+500 rpm).

Also, σ2 and σ3 are both negative. However, random forcing creates a rate of strain
tensor whose σ2

σ1
is comparable to σ3

σ1
. In the case of forcing with 1.66 Hz (+500 rpm),∣∣∣σ2σ1 ∣∣∣ is small compared to

∣∣∣σ3σ1 ∣∣∣. Thus, random forcing creates flow which stretched

and compressed along three directions, whereas forcing with 1.66 Hz (+500 rpm)
results in a flow which is stretched and compressed mainly along two directions. It
should also be noted, that the curve change slower after approximately 3 · 107 data
points used, which is in agreement with figure VII.20.
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Figure VII.22: Evolution of the local vorticity with the number data points measured.
The local vorticity, ω, is approaching a frequency on the order a few 1

100
Hz. Random

forcing shows to produce more fluctuations in the local vorticity than forcing with
1.66 Hz (+500 rpm) if less than 8 · 107 data points were used. However, the average
local vorticity is bigger for forcing with 1.66 Hz (+500 rpm). In other words, forcing
at 1.66 Hz (+500 rpm) creates a more stable and pronounced rotating mean flow
than random forcing.
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Figure VII.23: Magnitude of u0 obtained from the short-time averaged velocity field.
The magnitude, ‖u0‖, of the velocity computed from short-time averaged (or pseudo-
instantaneous) Eulerian velocity field, is several times bigger than the corresponding
value calculated from the long-time averaged flow field (see figure VII.20). The value
of the long-time averaged flow field is indicated with the blue (forcing with 1.66 Hz
(+500 rpm)) and red (random forcing) dashed lines. For both forcings, ‖u0‖ is
fluctuating between 2 and 10 mm

s
, Also, no clear trend can be observed. That agrees

with figure VII.24.

102



VII.4 Influence of the forcing

0 2 4 6 8 10 12 14 16
x 107

0

0.05

0.1

0.15

0.2

0.25

0.3

|ω
|  

[1
/s

]

data point number

|ω| (+500 rpm)
|ω| (random)
|ω| of MF (+500 rpm)
|ω| of MF (random)

Figure VII.24: Magnitude of the local vorticity computed from the short-time av-
eraged velocity field. The magnitude of the local vorticity, ‖ω‖, computed from
short-time averaged Eulerian velocity field, is several times bigger than the corre-
sponding value calculated from the long-time averaged flow field (see figure VII.22).
The value of the long-time averaged flow field is indicated with the blue (forcing
with 1.66 Hz (+500 rpm)) and red (random forcing) dashed lines. For both, random
forcing and forcing with 1.66 Hz (+500 rpm), ‖ω‖ is fluctuating between 0.05 and
0.25 1

s
. Moreover, no clear trend can be observed.
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Figure VII.25: σ2 and σ3 of the rate of strain tensor computed from the short-time
averaged velocity field. The top figure display the eigenvalues σ2 and σ3 of the rate
of strain tensor computed from short-time averages of the Eulerian velocity field.
Surprisingly, it is σ2

σ1
& 0 for both forcings. The long-time average did not show this

(figure VII.21). The figure at the bottom displays σ2 (©) and σ3 (+) normalized by
σ1 at random forcing (red) and forcing with 1.66 Hz (+500 rpm) (blue). The two
dashed lines are the ratio of σ2/σ1 computed for the long-time averaged flow field.
Clearly, the values of the short-time averaged mean flow deviate from their long-time
average.

104



VII.4 Influence of the forcing

Timescale of the flow

Six dimensionless numbers quantities can be build with the rate of strain and the
vorticity, which relate the change of the mean flow to the Kolmogorov time scale,
the frequency of the propellers or the eddy turn over time11, T :

Aτ,σ ≡ τη ·max (‖σ1‖, ‖σ3‖) (VII.18a)

Aτ,ω ≡ τη · ‖〈ω〉‖ (VII.18b)

Af,σ ≡ f−1 ·max (‖σ1‖, ‖σ3‖) (VII.18c)

Af,ω ≡ f−1 · ‖〈ω〉‖ (VII.18d)

AT,σ ≡ T ·max (‖σ1‖, ‖σ3‖) (VII.18e)

AT,ω ≡ T · ‖〈ω〉‖ (VII.18f)

where f is the effective frequency of the propellers. If the mean flow is stationary, i.e.
changing much slower than the characteristic time scale of the turbulent fluctuations,
Aτ,ω and Aτ,σ are much smaller than unity. Furthermore, the idea of scale separation
yields that Aω and Aσ should decrease with higher Reynolds numbers.

If AT,σ and AT,ω are much smaller than 1, then the mean-flow changes slowly
compared to the time scale of the biggest eddies.

The dimensionless numbers, Af,σ and Af,ω, test if the time scale of the flow field
is related to the propeller speed.

Figure VII.26 and table VII.3 show these six properties for the experiments
performed. To determine the local vorticity and the rate of strain for the small
measurement runs, the size of the fitting volume was set to 1.5 cm.

The mean flow charaterized by rate of strain, σ, and local vorticity, ω, changes 5
to 10 times slower than the eddy turn over time. Consequently, Aτ,σ and Aτ,ω, are
ranging from 10−3 to 10−2. In other words, the mean flow is changing a few hundred
to one thousand times slower than the turbulent fluctuations characterized by the
Kolmogorov time scale. We observe that the dimensionless numbers based on the
Kolmogorov time scale decrease with an increase in motor speed ( and thus also Rλ).
This supports Kolmogorov’s idea of scale separation, i.e. with intenser turbulence
smaller Kolmogorov scales will be reached, whereas the big scales remain unchanged.
However, this trend is small and probably within the uncertainty of Aτ,σ and Aτ,ω.

The parameters based on propeller speed and rate of strain and vorticity are
approximately 1

10
but not unity. Therefore, the timescale of the mean flow is not on

the order of the propeller speed. Moreover, Af,σ and Af,ω, change only little with
the frequency of the propellers. More measurements with a higher accuracy would
be needed to provide a better description.

In general, we noted that random forcing (bMV) creates a less rotating flow than
the other forcings investigated.

11The eddy turn over time is the characteristic time scale of the biggest eddies, and defined as
T ≡ L

u′
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Table VII.3: Time scales of the mean flow compared to the Kolmogorov time scale
τη, the eddy-turn-over time T and the effective propeller frequency, f .

speed at Aτ,σ Aτ,ω Af,σ Af,ω AT,σ AT,ω
propeller motor

[Hz] [rpm]

b
M

V

+1 300 1 · 10−2 7 · 10−3 6.5 · 10−2 4.4 · 10−2 0.46 0.30
+1.66 500 5 · 10−3 2 · 10−3 4.2 · 10−2 1.8 · 10−2 0.24 0.10
+2.25 675 4 · 10−3 4 · 10−3 4.6 · 10−2 5.0 · 10−2 0.21 0.23
+5 1500 3 · 10−3 4 · 10−3 4.4 · 10−2 6.2 · 10−2 0.17 0.23
+7.5 2250 4 · 10−3 3 · 10−3 7.5 · 10−2 5.7 · 10−2 0.37 0.28
+9.33 2800 4 · 10−3 3 · 10−3 9.0 · 10−2 5.9 · 10−2 0.37 0.25

−9.33 −2800 1 · 10−2 3 · 10−3 7.7 · 10−2 2.2 · 10−2 0.54 0.16

sM
V

+1 300 2 · 10−2 3 · 10−2 8.3 · 10−2 11 · 10−2 1.2 1.7
+1.66 500 1 · 10−2 1 · 10−2 7.0 · 10−2 5.8 · 10−2 0.9 0.8
+2.25 675 1 · 10−2 1 · 10−2 6.0 · 10−2 7.7 · 10−2 1.1 1.4

Anisotropic 2 · 10−2 8 · 10−3 1.8 · 10−1 8.0 · 10−2 1.14 0.51

Random (sMV) 1 · 10−2 1.1 · 10−2 8.8 · 10−2 7.8 · 10−2 1.2 1.1
Random (bMV) 3.7 · 10−3 1.2 · 10−2 4.9 · 10−2 0.9 · 10−2 0.27 0.05
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Figure VII.26: Dimensionless parameters Aτ,σ, Aτ,ω, Af,σ, Af,ω, AT,σ, AT,ω as a
function of the propeller speed, f . The ♦ symbol refers to the dimensional parameter
based on σ (Aτ,σ, Af,σ, AT,σ), whereas � denotes parameters based on ω (Aτ,ω, Af,ω,
AT,ω). The colors denote: red: CW forcing, green: anisotropic forcing, blue: random
forcing and black: CCW forcing. The small observation volume runs are marked
with filled symbols.
The mean flow characterized by rate of strain, σ, and local vorticity, ω, changes
5 to 10 times slower than the eddy turn over time for the big observation runs.
Consequently, it changes a few hundred times slower than the Kolmogorov time
scale. Dimensionless numbers based on the Kolmogorov time scale decrease with
an increase in propeller speed. This supports Kolmogorov’s idea of scale separation.
The parameters based on propeller speed and rate of strain or vorticity are constant
at approximately 1

100
but not unity. Therefore, the timescale of the mean flow is not

on the order of the propeller speed. Random forcing creates a less rotating flow than
the other forcing investigated.
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VII.5 Lagrangian structure functions of position and
velocity

The Lagrangian framework enables to obtain auto correlations and structure functions
along a trajectory. Moreover, it is possible to investigate models which require precise
data in this framework. This section will test predictions by Zybin et al in [1] and
[33]. Reference [1] was later published in Physical Review Letters [34]. It should be
noted, that the prediction on the scaling of the Lagrangian structure functions of
position is not included in the P.R.L. publication.

Zybin and his group derived the shape of the PDF of vorticity inside a cylindrical
vortex filament12 in fully developed hydrodynamical turbulence [33]. They restricted
the derivation to the inertial range of an incompressible fluid. Moreover, they assumed
that the Euler equation (III.7) is sufficient to describe a trajectory in this regime.

A fluid segment or a particle will experience only small changes to its velocity in
regions of low vorticity. Whereas, passing a vortex filament leads to fast oscillations
of the position of the observed test particle. They claim that the latter contributes
most to

Kn(τ) = 〈|u(t+ τ)− u(t)|n〉 (VII.19)

which is the n-th order Lagrangian structure function of velocity of a time difference
τ . Assuming that the structure function follows a power law, one can define the
(Lagrangian) scaling exponent ξLn :

Kn ∝ τ ξ
L
n (VII.20)

Using the shape of the PDF of vorticity in such a filament, they were able to compute
the scaling exponents, ξLn , in the inertial range from a set of differential equations [34].
They compared these to results published by our group [35]. It should be noted, that
K41 also predicts the behavior of the scaling exponents. The energy transfer rate
has the unit [m2 s−3], thus K41 and dimensional arguments yield

Kn ∝ (ε τ)n/2 ⇒ ξn =
n

2
(VII.21)

We measured the Kn up to the sixth order in the LEM for clockwise forcing at
1.66 Hz (+500 rpm) (bMV). They are displayed in figure VII.28.

Ouellette [30] proposed to define the Lagrangian inertial range as the region
where K2 scales linear with time. The definition becomes clear when focusing on
the averaged Lagrangian structure function, Kavg

n , and their corresponding averaged
energy transfer rate εavg:

Kavg
n =

1

N

N∑
i=1

Ki (VII.22a)

εavg =
1

N

N∑
i=1

εi (VII.22b)

12Vortex filaments are regions of high vorticity, they arise as eddies become stretched and advected
from bigger eddies (see section III.4).
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This definition is similar to equations13 (III.59) and (III.60). Analogous to equa-
tion14 (III.61) it is (

1

N

N∑
i=1

ε

)n/2

=
1

N

N∑
i=1

(εi)
n/2 (VII.23)

which holds only for the Lagrangian second order structure function. Although,
K2(τ) has yet not been derived from the Navier–Stokes equation, this definition is
similar to the definition of the Eulerian inertial range. However, it is common to use
ξLn
ξL2

. This enforces ξL2 = 1.

The compensated function K2(τ)
ε τ

is plotted in figure VII.27. The calculated inertial
range is ranging from 1.1 τη to 5.7 τη. Power law functions were fit with Gnuplot
to the inertial range to obtain the ξLn . The results are shown in figure VII.29 and
table VII.5. Our values are in very good agreement to a measurement at the same
Rλ ≈ 200 [30, 35]. Although the predicted values are bigger than our measured
scaling exponents, [35] indicates that this difference mainly due to the low Reynolds
number.
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Figure VII.27: Compensated Lagrangian second order structure function of velocity
at 1.66 Hz (+500 rpm) (bMV). K2(τ)

ε τ
was measured at a propeller speed of 1.66 Hz

(+500 rpm) (bMV). The dashed regions in K2(τ) denote regions of high uncertainty.
The inertial range is set to be between the two dashed lines. The latter were chosen
such that the value of the compensated K2 is 85% of the enclosed maximum of K2.
Thus, the inertial range is between 1.1 τη and 5.7 τη.

13εavg = 1
N

N∑
i=1

and Davg
p = 1

N

N∑
i=1

Di

14

(
1
N

N∑
i=1

ε

)p/3

= 1
N

N∑
i=1

(εi)
p/3
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Figure VII.28: Dimensionless Lagrangian n−order structure function of velocity
at 1.66 Hz (+500 rpm) (bMV). Kn was normalized by unη to make the function
dimensionless. This scaling introduces only a shift to the Kn. It does not change
the scaling. The order starts from 1 and increases from the bottom to the top. The
dashed lines show power laws which were fitted to the inertial rage (see figure VII.27).
The inertial range is indicated though the two dashed vertical lines.
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(+500 rpm) (bMV). The scaling exponents were obtained in figure VII.28 through
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prediction from [34], whereas PRL denotes the measurements published [30, 35].
The dashed line show scaling according to K41. Clearly, no K41 scaling was not
observed. Our data (N) is in very good agreement with the measurement (�) at the
same Reynolds number of Rλ ≈ 200 [30, 35]. With increasing Reynolds numbers the
measurements approach their prediction.
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Lagrangian structure functions of position

The same methods to obtain the scaling exponents of velocity can be used to predict
the behavior of the Lagrangian structure function of position, Rn(τ). The latter is
defined as

Rn(τ) = 〈|x(t+ τ)− x(t)|n〉 (VII.24)

They calculated [1] that Rn(τ) ∝ τ 3 in the inertial range for all n > 3. The first ten
structure functions of position at random forcing and forcing at 1.66 Hz (+500 rpm)
are shown in figure VII.31 and figure VII.28. In a log-log plot all Rn with n > 3
should be parallel in the inertial range. Clearly, both figures do not show this
behavior. For a further investigation power law functions were fitted to Rn(τ) of
forcing at 1.66 Hz (+500 rpm) in the inertial range. The latter was taken from the
Lagrangian structure function, K2, as discussed before. The obtained exponents, βLn ,
are shown in figure VII.29 and table VII.4. The measured exponents, βLn , seem to
proportional to the order n. With the help of a linear fit, we determined

βL(n) = (0.8984± 0.0088) · n (VII.25)

In other words
Rn(τ) ∝ τ 0.9n (VII.26)

We also plotted the compensated structure function, Rn
τ3

τ3η
ηn

for n > 3 in figure
VII.32. The compensated Rn show a plateau region for t > 8τη. However, this region
is only a few τη wide and depends on the order, n, of the structure function. That is
in agreement with the results from figure VII.31 and VII.33 discussed before.

Thus, the prediction of Zybin et al [1] could not be verified at Rλ ≈ 200. However,
we can try to relate the linear dependence of βLn to its physical meaning. The inner
part of Rn, x(t+ τ)− x(t) can be expressed with the velocity

x(t+ τ)− x(t) =

t+τ∫
t

u(t′)dt′ (VII.27)

Inserting (VII.27) into equation (VII.24) yields

Rn(τ) = 〈|x(t+ τ)− x(t)|n〉 =

〈∣∣∣∣∣∣
t+τ∫
t

u(t′)dt′

∣∣∣∣∣∣
n〉

(VII.28)

We can decompose the velocity, u(t′), into an average velocity, 〈u〉, plus fluctuations
in the velocity, u′(t′). The integral (VII.27) transforms then into

t+τ∫
t

u(t′)dt′ = 〈u〉τ +

t+τ∫
t

u′(t′)dt′ (VII.29)

If
∫ t+τ
t

u′(t′)dt′ is small compared to 〈u〉τ , we get

Rn(τ) = 〈|u τ |n〉 (VII.30)
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In other words,
Rn ∝ τn (VII.31)

which is close to our observation Rn ∝ τ 0.9n. The deviation is probably mainly due
to the negligence of

∫ t+τ
t

u′(t′)dt′. Moreover, measurement errors introduce a further
bias. Yet, this first approximation yields a result comparable to the observation.
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Figure VII.30: Exponents of the Lagrangian structure function of position. Power
laws were fitted to the Lagrangian structure function of position with forcing at
1.66 Hz (+500 rpm) (bMV) (figure VII.33) to the inertial range (see figure VII.27).
According to [1], the scaling exponents obtained, βLn , should be 3 for order four and
higher. Clearly, this was not observed. On the contrary, the exponents, βLn , increase
linear with n as indicated by the linear fit, βL(n) = (0.8984± 0.0088) · n. In other
words, Rn(τ) ∝ τ 0.9n.
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Figure VII.31: Dimensionless Lagrangian n−order structure function Rn/η
n of posi-

tion. The top figure shows the Lagrangian structure functions of position for the
random forcing (bMV). The bottom figure is an enlargement of the probable inertial
range, the legend did not change. For the first three Rn/η

n (dashed curves) no
prediction was made. According to [1] all Rn/η

n with n > 3 should scale with τ 3.
Therefore, the Rn/η

n should be approximately parallel in the inertial range. Our
data allows us to cover a possible inertial range between 1 τη and approximately
40 τη. Obviously, the Rn>3 are not parallel in this range. Moreover, using the inertial
range found in figure VII.27, the scaling exponents, βLn are increasing with the order,
n, of Rn.
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Figure VII.32: Compensated Lagrangian n−order structure function of position.
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Figure VII.33: Dimensionless Lagrangian n−order structure function of position.
Clockwise forcing at 1.66 Hz (+500 rpm) (bMV) was used to obtain the dimensionless
Lagrangian structure function of position Rn/η

n. The order, n, is starting from 1
and increasing from the bottom to the top. The black dashed lines show power laws
which were fitted to the inertial rage (as obtained in figure VII.27).
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Table VII.4: Measured scaling exponents βLn the Lagrangian structure function of
position Rn. The measured βLn were obtained at Rλ ≈ 200 at forcing with 1.66 Hz
(+500 rpm) (bMV).

Order n 1 2 3 4 5 6 7 8 9

βLn 0.91 1.77 2.60 3.40 4.19 5.51 6.36 7.25 8.2

Table VII.5: Measured and predicted Lagrangian scaling exponents ξLn
ξL2

. The measured

ξLn were obtained at Rλ ≈ 200 at forcing with 1.66 Hz (+500 rpm) (bMV).

Order n ξLn
ξL2

value from [34]

1 0.61 0.59
2 1 1
3 1.21 1.30
4 1.32 1.51
5 1.37 1.65
6 1.38 1.75
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The Lagrangian Exploration Module was characterized at different propeller speeds
and different forcing schemes with Particle Tracking Velocimetry. It was demonstrated
that the LEM produced nearly isotropic and homogeneous turbulence in a volume of
the size of the integral length scale. The turbulence was characterized by values of Rλ

up to about 350. Higher turbulence levels under similar experimental conditions are
most likely achievable by increasing the speed of the propellers, or by using a different
propeller design. The mean flow was shown to be of the order of a few mm

s
, and

the fluctuating velocity was found to be several times stronger than the underlying
mean-flow. Consequently, the LEM is a good tool for Lagrangian experiments.

It is possible to change the properties of the flow by adjusting the speed of each
propeller individually. By driving the flow in two different ways, we investigated the
differences both in the turbulence and the mean flow field of the two experiments. In
the first run, the propeller speed was held constant and in the second, the propeller
speed changed randomly over time. We ensured that the energy rate injected was
the same in both experiments. Only small variations in the turbulence and the mean
flow were observed between the data obtained with these two different forcings. This
recalls the idea of Kolmogorov, which is that the statistics at scales much smaller
than the scales at which the turbulence is created are independent of the way the
turbulence was created.

The predictions by Zybin et al [1, 33, 34] were compared to results obtained in
the LEM at Rλ ≈ 200. Good agreement was found for the scaling exponents, ξLn ,
of the Lagrangian n−th order structure functions of velocity, Kn(τ). The scaling
exponents obtained in the LEM were also in very good agreement to those obtained
in a French-Washing machine at the same turbulence level [30, 35].

Furthermore, the scaling exponents, βLn , of the Lagrangian n−th order structure
function of position, Rn(τ), were measured at Rλ ≈ 200. In contrast to [1], βLn
did not appear to be 3 for n > 3. Moreover, we observed βLn = (0.898± 0.009) · n
for n < 10. Therefore, this prediction is not supported by our experiments at the
turbulence level investigated.

A possible future project for the Lagrangian Exploration Module is a detailed study
of how to generate turbulence. After automatizing the measuring and analysis
process, one could use genetic algorithms to explore the space of possible forcings
more quickly than with our present analysis methods. The insights gained through
this research could also improve the design of actively–driven grids in wind-tunnels.

The large number of windows on the LEM enables us to use several measurement
techniques at the same time, thus allowing more stringent tests and comparisons
of new or existing instruments. For example, new physical insights can be gained
through the simultaneous observation of particles of different sizes or types, and from
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the combination of Eulerian with Lagrangian measurement techniques.
A further possible project is to use pressurized sulfur-hexafluoride (SF6) as a

working fluid in the LEM. The Göttingen U–Boot pressure vessel provides SF6 at
pressures up to 15 bar. SF6 has a kinematic viscosity of 1.5 · 10−7 m2 s−1 at this
pressure. Since the maximum turbulence level observable is limited mainly by the
Kolmogorov time scale and the frame rate of the cameras, SF6 would allow us to
reach higher turbulence levels up to Rλ ≈ 3000.

In addition, it is planned to use the LEM to investigate the behavior of copepods
in a turbulent environment. These small crustaceans are an important food source
for fish larvae.
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